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Laparoscopy is an approach to liver surgery which reduces complications
and recovery time, and can also harness developments in machine-assisted
surgery. In this report, we outline and implement the end-to-end process
of performing 3D-2D registration using only a preoperative liver mesh and
intraoperative laparoscopy footage, with no human involvement in respect
to landmark annotation and alignment. We present novel research in the
fields of 2D and 3D landmark segmentation, with best-in-class results for
the dataset. We study iterative and deep learning approaches in the area of
3D-2D registration, with silhouette extrapolation implemented for improved
results. Finally, we explore hardware implementation of the pipeline and data
visualisation techniques using an Augmented Reality headset. Our results
include a 30% relative increase in 2D segmentation precision, 36% improve-
ment in 3D segmentation distance, and 31% improvement in reprojection
error in registration compared to leading research.

CCS Concepts: • Human-centered computing → Mixed / augmented
reality; Human computer interaction (HCI); • Computing methodologies
→ Computer vision; Image segmentation; Tracking; Object detection;
Supervised learning; Neural networks; Point-based models; • Applied
computing → Life and medical sciences.

Additional KeyWords and Phrases: segmentation, registration, deep learning,
image-guided intervention, surgical data science, laparoscopy

1 INTRODUCTION
Laparoscopic liver surgery (also known as minimally-invasive liver
surgery and keyhole surgery) is a surgical approach which min-
imises recovery time and the probability of complications [Slakey
et al. 2013]. This surgical approach also facilitates developments
in the area of machine-assisted surgery due to its use of a camera,
such as 3D-2D registration of the liver, where a preoperative 3D
mesh of the liver, including anatomical landmarks such as tumours
and vessels, can be superimposed onto the liver in real-time during
surgery.
In this report, we present an implemented end-to-end pipeline,

automating the process of 3D-2D registration of the liver. This
includes segmentation models of both preoperative 3D meshes,
and intraoperative 2D laparoscopic images, which have both in of
themselves warranted novel research currently under review, having
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outperformed prior research on the same dataset [Ali et al. 2025].
Model outputs are utilised in a registration pipeline that does not
require manually annotated data. A visualisation implementation
has also been completed to visualise segmentation predictions and
create a model navigation environment. Our results have led to
substantial improvement in all tasks of the pipeline.

2 BACKGROUND RESEARCH

2.1 2D Segmentation
Ronneberger et al. present the ’U-shaped architecture’ for Fully Con-
volutional Networks (FCNs) in the form of UNet, proving that large
datasets were not required for high accuracy in the field of biomedi-
cal segmentation [Ronneberger et al. 2015]. The UNet architecture
consists of a contracting path, which has pooling layers, an expan-
sive path with up-convolutions, with these two paths connected
by a bottleneck and skip connections, achieving increased perfor-
mance at reduced inference times compared to previous models
[Ronneberger et al. 2015].
UNet++ by Zhou et al. builds upon the UNet architecture with

a greater number of convolution blocks, dense skip connection
pathways, and deep supervision [Zhou et al. 2020]. UNet3+ further
develops upon the ideas of UNet++, proposing full-scale skip con-
nections where each convolutional block in the contracting path
connects to its opposing and below blocks in the expansive path; the
bottleneck and expansive path is supervised by the ground truth and
has skip connections to every block further up the path [Huang et al.
2020]. ResUNet is a deep residual UNet-based model, replacing the
standard Convolution-ReLU block with residual convolution blocks
utilising batch normalisation [Zhang et al. 2018]. Jha et al. propose
ResUNet++, modifying the ResUNet architecture for medical image
segmentation through the addition of squeeze-excitation blocks to
dynamically weight convolutional channels, ASPP for increased
context when classifying a pixel, and the introduction of attention
for enhanced feature quality [Jha et al. 2019].

Chen et al. proposeDeepLabV3+, building on top of theDeepLabV3
architecture with the addition of depth-wise separable convolution
to both ASPP and decoder modules, resulting in improved perfor-
mance, having been tested on non-medical benchmarks [Chen et al.
2018].
Various implementations of UNet have been thoroughly evalu-

ated alongside ResUNet in the Liver Tumour Segmentation (LiTS)
benchmark [Bilic et al. 2023], with UNet++ and UNet3+ both demon-
strating their outperformance of UNet on the benchmark [Huang
et al. 2020; Zhou et al. 2020], highlighting their relevance to the
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field of liver surgery. Jha et al. demonstrated that ResUNet++ out-
performed both UNet and ResUNet in both the Kvasir-SEG and
CVC-ClinicDB datasets, showing its suitability in medical applica-
tions [Bernal et al. 2015; Jha et al. 2019, 2020].
Koo et al. demonstrate semantic contour detection of the ridge

and silhouette of the liver through the use of Convolutional Neural
Networks (CNNs) [Koo et al. 2022], using a CASENet model [Yu
et al. 2017] with a ResNet50 encoder [He et al. 2016], pre-trained on
the ImageNet dataset [Deng et al. 2009]. Koo et al. augment their
dataset through the use of scale, shear, brightness, contrast, rotation,
and translation transformations, to increase the generalisation and
invariance capabilities of the model [Koo et al. 2022].

As part of the MICCAI 2022 conference, the Preoperative to Intra-
operative Laparoscopy Fusion (P2ILF) challenge was hosted, with
the goal of automating the end-to-end process of 3D-2D registra-
tion in liver laparoscopy surgery [Ali et al. 2025]. This includes
the development of methods to perform landmark segmentation
on intraoperative laparoscopic footage; all teams published in the
challenge decided to use deep learning for this task [Ali et al. 2025].
Differing to the dataset used by Koo et al., the P2ILF dataset has
annotations for the ridge, silhouette, and the falciform ligament of
the liver [Ali et al. 2025; Koo et al. 2022]. Teams from around the
world attempted the P2ILF challenge, covering a range of different
approaches in terms of model, loss function, dataset augmentation,
and pre-training for the 2D segmentation task [Ali et al. 2025].

Pei et al. introduce the D2GPLAND model, a depth-aware model
guided by unified features from an estimated depth map and the
original image. The depth map is estimated from the original image
using a depth estimation network, which is then put through a
frozen Segment AnythingModel (SAM) encoder [Kirillov et al. 2023],
from which its features are extracted [Pei et al. 2024]. For feature
extraction of the original laparoscopic image, a ResNet34 encoder
[He et al. 2016] is used [Pei et al. 2024]. D2GPLAND achieves best-in-
class results on liver segmentation on their L3D dataset, a collation
of laparoscopic images from multiple sources [Pei et al. 2024].

2.2 3D Segmentation
Recent advances in geometric deep learning have enabled segmen-
tation of anatomical surfaces directly on meshes and point clouds.
Hanocka et al. introduce MeshCNN, which adapts convolution and
pooling operations to irregular triangular meshes by operating di-
rectly on edges rather than vertices [Hanocka et al. 2019]. In their
approach, edge convolutions aggregate features from neighbour-
ing edges, with learnable filters that are weighted by the angles
between adjacent faces. Pooling is performed by collapsing the least
relevant edges, allowing the network to retain only important geo-
metric structures throughout the hierarchy. MeshCNN achieves
state-of-the-art performance on benchmark segmentation tasks, yet
its reliance on handcrafted edge features and sensitivity to mesh
resolution can limit scalability on highly detailed anatomical models.
Building on the notion of treating meshes as graphs, Kipf and

Welling propose Graph Convolutional Networks (GCNs) for explicit
modelling of the mesh topology. In this approach, each vertex be-
comes a node in a graph and convolution feature propagation is

performed by spectral filtering [Kipf and Welling 2017]. This frame-
work captures both fine local geometry and global connectivity,
delivering robustness to noise and topological variation. However,
dense connections and expanding neighbourhoods leads to high
computational and memory costs, making it increasingly difficult
to process very high-resolution meshes like those of organs.
An alternative example is to operate on unstructured point sets.

Qi et al. present PointNet, which processes each point independently
through a shared multi-layer perceptron and achieves permutation
invariance via max-pooling [Qi et al. 2017a]. Since max-pooling
selects only the maximum activation in each feature channel across
the entire point set, it discards the spatial distribution of features
from neighbouring points. As a result, fine local structures, such as
small curvature variations or intricate surface details, are lost. By
concatenating the resulting global feature vector back to per-point
features, PointNet delivers competitive segmentation accuracy with
remarkable simplicity and efficiency, but its reliance on max-pooling
restricts the capture of fine local structures.
To overcome this limitation, Qi et al. extend the architecture

hierarchically in a newly revised PointNet++. They introduce set
abstraction layers that recursively partition the point cloud via far-
thest point sampling and ball queries, applying PointNet locally
within each region to learn fine-grained descriptors, and then aggre-
gate these across scales [Qi et al. 2017b]. This multi-scale grouping
strategy adapts to variable point densities and markedly improves
segmentation performance on complex anatomical surfaces by cap-
turing both local detail as well as the global context.

2.3 3D-2D Registration
Registration of the liver has been an area of research for quite some
time, as it is known that if successful, clear advances in regards to
reducing surgical risk will be made, as these systems could help
surgeons identify anatomical structures, particularly in complex
interventions [Koo et al. 2022]. Koo et al. explain that the registration
process usually occurs in two stages: global alignment, followed by
local alignment. Koo et al. mention that automatic approaches to
local alignment have been proposed, but rely on good initialisation
provided by global alignment, which is usually performed manually
to some degree, such as requiring annotation from a clinician during
surgery [Koo et al. 2022].

Adagolodjo et al. propose a method that requires manual annota-
tion of the silhouette on the intraoperative image, a process which
took around 18 seconds (with an overall intraoperative setup time
being around a minute) [Adagolodjo et al. 2017]. This approach,
albeit an improvement over manual rigid registration, requires a lot
of manual intervention to be considered feasible [Adagolodjo et al.
2017].
The perspective-n-point (PnP) problem is particularly pertinent

in the area of registration. PnP, in regards to registration of the
liver, is the problem of estimating the laparoscopic camera’s pose
(position and orientation), given a set of 3D points (i.e. landmarks
from the preoperative 3D model), and their respective locations in
a 2D image (i.e. landmarks from the intraoperative laparoscopic
image). Solutions exist for the PnP problem [Lepetit et al. 2009],
but it is usually considered in the perspective of having 3D points
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and 2D projections of a point concurrently (from the same moment
in time), however in this case, the 3D points are from a different
time to the 2D points, this combined with the knowledge that the
liver is highly deformable during surgery and the factoring in of
occlusion, highlights the difficulties in this field. Other approaches in
solving this problem can include adding Random Sample Consensus
(RANSAC) [Koo et al. 2022] and differential rendering [Ali et al.
2025].
Since abdominal organs can undergo large deformations during

surgery [Adagolodjo et al. 2017], it is imperative to be able to model
these deformations. Usually approaches utilise the Finite Element
Method (FEM) to simulate deformations [Adagolodjo et al. 2017;
Labrunie et al. 2024], however As-Rigid-As-Possible (ARAP) surface
modelling has also been proposed [Mhiri et al. 2025].
Labrunie et al. propose the Liver Mesh Recovery (LMR) frame-

work [Labrunie et al. 2024]; based off of the Human Mesh Recovery
framework [Kanazawa et al. 2018], LMR utilises patient-specific
models to perform registration, as opposed to the optimisation-
based approach typically adopted by existing solutions, due to the
computational expense of these iterative solutions during the pro-
cedure [Labrunie et al. 2024]. Labrunie et al. propose training a
ResNet model by deforming an annotated preoperative 3D liver
model, and then projecting it with its landmarks annotated such
that 2D masks can be simulated, with predefined camera intrinsics
and liver deformation parameters known [Labrunie et al. 2024]. Af-
ter training, the model can then receive a segmentation mask from
the 2D segmentation model as input, and predict the deformation
parameters required to deform the 3D model it was trained on such
that it matches the shape captured in the laparoscopic image.

Mhiri et al. propose a solution utilising the same patient-specific
training approach taken by Labrunie et al., albeit with modifications
[Mhiri et al. 2025]. In place of FEM, ARAP is used as it is less com-
putationally expensive; also, a simple multilayer perceptron (MLP)
is trained to perform registration, with results beating LMR on the
dataset used [Mhiri et al. 2025].

3 METHOD

3.1 2D Segmentation
3.1.1 Proposed Method. All models ablated for this task (UNet,
UNet++, UNet3+, DeepLabV3+, and ResUNet++) are equipped with
ResNet34 encoders that have been pre-trained on the ImageNet
dataset [Deng et al. 2009; He et al. 2016]. Models are trained on the
L3D dataset [Pei et al. 2024], augmented with flip transformations
on both the 𝑥− and 𝑦− axes. The AdamW optimiser was used for
training [Loshchilov and Hutter 2019], in conjunction with a learn-
ing rate plateau scheduler. The loss functions ablated over consisted
of different weightings of cross-entropy loss, Dice loss, Huber loss,
and Focal-Tversky loss.
For cross-entropy loss, the following novel logarithmic class

weights function was used, with𝑊 (𝑖) being the weight for a class 𝑖 ,
𝑀 is the set of all training mask pixels, and𝑀 (𝑖) ⊆ 𝑀 is the set of
mask pixels of class 𝑖:

𝑊 (𝑖) = max
[
1.0, log10

(
|𝑀 |

|𝑀 (𝑖) |

)]
(1)

Fig. 1. 2D segmentation task pipeline. Dashed processes are optional.

Once the training ablations have been completed, the models are
evaluated using two validation patients from the P2ILF training
set [Ali et al. 2025], using precision and Dice similarity coefficient
(DSC). Models were then selected to be fine-tuned based on their
performance in this evaluation. Fine-tuning is performed on the
P2ILF training set (minus the two aforementioned patients which
are used as a validation set).

Finally, once the model has been fine-tuned, its predicted masks
are then post-processed. This involves culling known false positive
pixels (i.e. outside of camera, ligament pixels above/below both the
ridge and silhouette), applying the Ramer-Douglas-Peucker algo-
rithm for smoothing landmark contours [Douglas and Peucker 1973;
Ramer 1972], and applying the Zhang-Suen algorithm for skeletoni-
sation of contours [Zhang and Suen 1984]. This centre line can then
be dilated for evaluation, or sampled into a set of points.

3.1.2 Loss Function. Our proposed composite loss function consist-
ing of weighted cross-entropy loss (LwCE), Dice loss (LDL), Huber
loss (LHL), and Focal-Tversky loss (LFTL), can be represented as:

L = 𝛼 · LwCE + 𝛽 · LDL + 𝛾 · LHL + 𝛿 · LFTL (2)

In Equation 2, 𝛼 , 𝛽 , 𝛾 , and 𝛿 are the hyperparameters which we
intend to ablate to find the optimal solution.

3.2 3D Segmentation
3.2.1 Proposed Method. The PointNet++ architecture used in our
approach is designed to process and segment 3D point clouds di-
rectly, making the conversion of 3D data into point cloud represen-
tations a necessary step in our method. The implementation used is
adapted from the repository by Yan [Yan 2019] and is based on the
work demonstrated by Qi et al. [Qi et al. 2017b]. The PointNet++
network was trained on the datasets using different loss functions,
including a novel midline loss. The optimal hyperparameters and
loss functions were selected through an ablation study, detailed in
Section 4.2.3. The standard PointNet architecture was also tested
[Qi et al. 2017a].
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3.2.2 Loss Function. We introduce a novel midline loss function,
Lmidline, designed to encourage alignment between predicted seg-
mentation points and a central anatomical midline derived from
ground-truth labels. This loss improves structural consistency in
thin and elongated anatomical regions.

Let X be the set of predicted 3D segmentation points. To estimate
the central anatomical axis, we perform a weighted Principal Com-
ponent Analysis (wPCA) onX, using the segmentation probabilities
as weights. This yields a principal direction vector, along which we
sample a set of candidate midline points C.
Each candidate point 𝑐𝑘 ∈ C is refined via a differentiable soft-

snapping process. This process serves as a smooth projection mech-
anism, producing a refined point 𝑐∗

𝑘
using a softmax-weighted com-

bination of all segmentation points:

𝑐∗
𝑘
=

𝑁∑︁
𝑖=1

𝛼𝑖 𝑥𝑖 , where 𝛼𝑖 =
exp

(
−𝜆 ∥𝑥𝑖 − 𝑐𝑘 ∥

)∑𝑁
𝑗=1 exp

(
−𝜆 ∥𝑥 𝑗 − 𝑐𝑘 ∥

) .
The set of refined points S𝑝 defines the predicted midline.

To measure alignment between the predicted segmentation and
the midline, each point 𝑥𝑖 ∈ X is softly projected ontoS𝑝 , producing
a set of projected points X̂. These projections are subsequently used
in the loss calculation to penalise deviations from the midline in a
differentiable manner.

The midline loss comprises two components. The deviation loss
(Ldev) serves as a thickness controller by penalising the distance
between each segmentation point and its nearest soft projection
onto the midline:

Ldev =

∑𝑁
𝑖=1𝑤𝑖

(
𝑒𝛼 ∥𝑥𝑖−𝑥𝑖 ∥ − 1

)
∑𝑁
𝑖=1𝑤𝑖 + 𝜖

, (3)

where𝑤𝑖 denotes the segmentation probabilities, and 𝜖 is a small
constant to ensure numerical stability. A visualisation of the penalty
computation pipeline for the midline loss is provided in Figure 2.

Raw Predictions Computed Midline Penalty

Li
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Fig. 2. Visualisation of the penalty computation pipeline for ligament and
ridge regions. From left to right: raw segmentation predictions, computed
midlines, and resulting deviation-based penalty maps. For ligament, penalty
values range from low (blue) to high (green); for ridge, low penalties are
shown in red, increasing to yellow for higher deviations from the midline.

In parallel, the alignment loss (Lalign) ensures that the predicted
midline 𝑆𝑝 conforms closely to the ground truth midline 𝑆GT. This

is accomplished by computing a soft-assigned Chamfer distance
between the two midlines:

Lalign =
1
2

( 1
|𝑆𝑝 |

∑︁
𝑠𝑝 ∈𝑆𝑝

𝑑CD (𝑠𝑝 , 𝑆GT) +
1

|𝑆GT |
∑︁

𝑠GT∈𝑆GT
𝑑CD (𝑠GT, 𝑆𝑝 )

)
,

(4)
where 𝑑CD (·, ·) denotes the point-to-midline distance metric.

The overall midline loss is then defined as:

Lmidline = (1 − 𝜆𝑚) Ldev + 𝜆𝑚 Lalign, (5)

with the hyperparameter 𝜆 balancing the contributions of the
deviation and alignment components.
To balance the geometry-based constraints imposed by the mid-

line loss with the region-based accuracy ensured by the weighted
cross-entropy loss (L𝑤𝐶𝐸 ), we introduce a dynamic scaling factor.
This factor adjusts for the potentially different magnitudes of the
losses during training:

𝛽 =
L𝑤𝐶𝐸

1
2

(
Lridge
midline + Llig

midline

)
+ 𝜖

, (6)

where Lridge
midline and Llig

midline denote the midline losses computed
for the ridge and ligament structures, respectively.
Finally, the combined total loss for the 3D segmentation task is

expressed as:

Ltotal = 𝛼 L𝑤𝐶𝐸 + 𝛽

(
𝜆ridge L

ridge
midline + 𝜆lig L

lig
midline

)
. (7)

3.3 3D-2D Registration
3.3.1 Proposed Method. The 3D-2D registration pipeline follows
an iterative optimisation approach based on differentiable rendering,
similar to that proposed by the NCT team from the P2ILF challenge
[Ali et al. 2025]. At each iteration, the liver mesh and its associated
anatomical landmarks are transformed using the current rotation
and translation parameters. The projected 3D landmarks are then
directly compared against their corresponding segmented 2D land-
marks to guide the optimisation process [Ali et al. 2025].

To strengthen the registration performance, the 3D mesh is aug-
mented with an estimated silhouette contour. This silhouette is
generated by tracing the shortest path along the mesh boundary,
connecting anatomical extremes such as the leftmost, uppermost
and rightmost points. The resulting curve is then smoothed and
resampled to produce a uniformly spaced contour. This additional
landmark helps provide extra guidance along the edges of the liver,
where estimating depth is often difficult.

During optimisation, only the rigid transformation parameters —
specifically the rotation matrix and translation vector — are updated,
while the camera pose and liver scale remain fixed. The camera is
placed such that it is facing the liver’s anterior face, followed by a
small random perturbation to simulate varied viewpoints. To im-
prove convergence, an initial translation adjustment is performed
to align the projected 3D ligament landmarks with their 2D segmen-
tations before full optimisation begins.
The optimisation is carried out over 150 iterations using the

AdamW optimiser [Loshchilov and Hutter 2019] with an initial
learning rate of 0.02, alongside a plateau scheduler that adaptively
reduces the learning rate based on stagnation of the loss. 30 random
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initialisations are performed, and the the final transformation corre-
sponding to the lowest achieved loss is selected to ensure robustness
against suboptimal starting configurations.

3.3.2 Loss Function. The loss function used to optimise registra-
tion is a weighted sum of Chamfer distances computed between the
projected 3D landmarks and the segmented 2D landmarks. Cham-
fer distance is computed separately for the ridge, ligament, and
silhouette landmarks, capturing the closest-point correspondences
in the 2D image plane. Following a similar strategy to the NCT
team in the P2ILF challenge, different coefficients of weights are
applied to each landmark type to guide the optimisation [Ali et al.
2025]. To determine the optimal set of weights, an ablation study
was conducted by varying the loss coefficients and evaluating the
resulting registration accuracy using the average Chamfer distance.
This process allowed us to identify the most suitable coefficients for
the ligament, ridge, and silhouette landmarks.

3.4 Augmented Reality
Augmented Reality development was performed on the Varjo XR-4
Focal Edition headset. It is equipped with 90Hz displays providing
3840×3744 resolution at 51 pixels per degree, and 20MP passthrough
cameras for video see-through (VST) [Varjo [n. d.]]. AR development
could be performed on both Unity and through Varjo’s C++ SDK,
the latter was chosen as greater flexibility is required to extract the
camera feed, and load deep learning models.

Firstly, an API was created from the ground up to accomplish two
tasks: passthrough camera feed extraction, and object rendering
onto the headset. Once completed, the camera feed can be passed to
libraries such as OpenCV for processing, or the PyTorch C++ API
to perform inference using our segmentation models. The render-
ing is performed on an OpenGL backend allowing for fine-grained
control over visualisation. ImGui is used as a GUI library to modify
parameters during execution.
A demonstration of the data visualisation capabilities of Aug-

mented Reality technologies in this field was prepared, involving
showing the 3D liver mesh rendering over the top of VST, with
real-time conversion of the mesh to a point cloud, and rendering of
landmark annotations, with the orientation of the liver able to be
changed in real-time with the usage of the Varjo controllers.

4 EVALUATION

4.1 2D Segmentation
4.1.1 Datasets. Two datasets were used for the 2D segmentation
task: the L3D dataset was used to initially train the model [Pei et al.
2024], and the P2ILF dataset was used for fine-tuning [Ali et al. 2025].
Three landmarks of the liver are present in the annotated masks for
both datasets: the silhouette, the ridge, and the falciform ligament.
The L3D dataset contains 1,152 image frames from 39 patients (122
frames are in the validation set and a further 109 make up the test
set) [Pei et al. 2024]. The P2ILF dataset contains 197 frames from 11
patients (47 images from 2 patients make up the validation set and
30 images from 2 patients make up a test set) [Ali et al. 2025].

4.1.2 Evaluation Metrics. To evaluate model performance, the met-
rics in the P2ILF challenge 2D segmentation task are used [Ali et al.
2025], these being:

• Precision: this metric focuses on on penalising false positives
to ensure correct predictions are made.

𝑃 =
TP

TP + FN
(8)

• Dice similarity coefficient: this metric is used to ascertain the
similarity between the predicted segmentation mask (𝑌pred)
and the ground truth (𝑌truth), it is the number of predicted
true positive pixels multiplied by two and divided by the
sum of predicted true positive pixels and actual true positive
pixels.

𝐷 =
2 · |𝑌pred ∩ 𝑌truth |
|𝑌pred | + |𝑌truth |

(9)

• Symmetric distance: Ali et al. use a symmetric distance met-
ric proposed by François et al. [Ali et al. 2025; François et al.
2020]. 𝑑max is a threshold value for whether a predicted land-
mark is spurious, 𝐵𝐼 is the set of predicted image landmarks,
whilst 𝐶𝐼 is the set of ground truth image landmarks. 𝑄 is
the tolerance region around the ground truth landmarks (de-
fined by the threshold 𝑑max), and 𝑑𝑆 is a symmetric distance
function:

𝐺 =


∑︁

𝑏𝐼 ∈𝐵𝐼∩𝑄
𝑑𝑆 (𝑏𝐼 ,𝐶𝐼 \FN) +

∑︁
𝑐𝐼 ∈𝐶𝐼 \FN

𝑑𝑆 (𝑐𝐼 , 𝐵𝐼 ∩𝑄)


× 1
2 · |𝐶𝐼 | · 𝑑max

+ |FP|
|𝐼 | − 2 · |𝐶𝐼 | · 𝑑max

+ |FN|
|𝐶𝐼 |

(10)

4.1.3 Experimental Setup. In training, the L3D dataset was aug-
mented with flip transformations across both the 𝑥− and 𝑦− axes,
followed by resizing the image to 416 × 320 pixels. The AdamW op-
timiser was used with a learning rate plateau scheduler [Loshchilov
and Hutter 2019], which lowered the learning rate to one fifth of its
original value after three epochs of no decrease in validation loss.

No. Arch. LR Batch 𝛼/𝛽/𝛾/𝛿

1 UNet 0.0001 32 1.00/0.00/0.00/0.00
2 UNet 0.0001 8 1.00/0.00/0.00/0.00
3 UNet++ 0.001 32 0.25/0.25/0.00/0.50
4 UNet++ 0.0005 16 0.50/0.00/0.50/0.00
5 UNet++ 0.0005 16 0.75/0.25/0.00/0.00
6 UNet3+ 0.001 8 0.50/0.00/0.00/0.50
7 UNet3+ 0.001 8 0.50/0.25/0.00/0.25
8 DeepLabV3+ 0.0001 64 0.25/0.00/0.25/0.50
9 ResUNet++ 0.0005 16 0.50/0.00/0.00/0.50
10 ResUNet++ 0.0005 8 0.75/0.00/0.00/0.25

Table 1. Candidate models selected from the training ablation study. Here,
Arch. is model architecture, LR is learning rate, Batch is batch size, and
𝛼/𝛽/𝛾 /𝛿 are the loss function hyperparameters.
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Candidate
Initial Training Fine-Tuning Post-Processing

𝑃init ↑ 𝐷̄init ↑ 𝐺init ↓ 𝑃tune ↑ 𝐷̄tune ↑ 𝐺tune ↓ 𝑃post ↑ 𝐷̄post ↑ 𝐺post ↓
1 0.39 0.22 0.69 0.45 0.23 0.67 0.44 0.26 0.67
2 0.41 0.29 0.54 0.44 0.33 0.52 0.45 0.35 0.53
3 0.35 0.28 0.59 0.38 0.30 0.56 0.43 0.32 0.57
4 0.42 0.25 0.64 0.43 0.30 0.55 0.45 0.32 0.57
5 0.39 0.28 0.61 0.38 0.31 0.56 0.39 0.32 0.57
6 0.36 0.24 0.60 0.51 0.31 0.51 0.52 0.33 0.54
7 0.32 0.31 0.56 0.42 0.25 0.62 0.44 0.28 0.63
8 0.34 0.23 0.65 0.36 0.21 0.69 0.36 0.22 0.72
9 0.38 0.27 0.63 0.30 0.15 0.80 0.30 0.15 0.79
10 0.32 0.17 0.70 0.43 0.17 0.70 0.45 0.21 0.72

Table 2. Fine-tuning results using the loss function L with 𝛼 = 1.00, 𝛽 = 0.00, 𝛾 = 0.00, and 𝛿 = 0.00 (see Equation 2). Highlighted cells represent a result that
outperforms all P2ILF challenge teams in that metric. The best results are highlighted in bold.

Candidate
Initial Training Fine-Tuning Post-Processing

𝑃init ↑ 𝐷̄init ↑ 𝐺init ↓ 𝑃tune ↑ 𝐷̄tune ↑ 𝐺tune ↓ 𝑃post ↑ 𝐷̄post ↑ 𝐺post ↓
1 0.39 0.22 0.69 0.35 0.37 0.47 0.45 0.37 0.44
2 0.41 0.29 0.54 0.38 0.40 0.40 0.48 0.43 0.39
3 0.35 0.28 0.59 0.35 0.37 0.47 0.47 0.39 0.45
4 0.42 0.25 0.64 0.31 0.36 0.53 0.40 0.37 0.48
5 0.39 0.28 0.61 0.36 0.39 0.46 0.44 0.39 0.45
6 0.36 0.24 0.60 0.33 0.41 0.47 0.44 0.42 0.40
7 0.32 0.31 0.56 0.33 0.40 0.54 0.45 0.42 0.43
8 0.34 0.23 0.65 0.31 0.29 0.60 0.40 0.30 0.56
9 0.38 0.27 0.63 0.31 0.29 0.66 0.35 0.28 0.56
10 0.32 0.17 0.70 0.32 0.34 0.51 0.39 0.34 0.50

Table 3. Fine-tuning results using the loss function L with 𝛼 = 0.75, 𝛽 = 0.00, 𝛾 = 0.00, and 𝛿 = 0.25 (see Equation 2). Highlighted cells represent a result that
outperforms all P2ILF challenge teams in that metric. The best results are highlighted in bold.

A patience of 7 was used. Training was performed on an NVIDIA
RTX 4070 except where VRAM was a limiting factor, in which the
University of Leeds Aire HPC cluster was used, which contains GPU
nodes equipped with three NVIDIA L40S GPUs per GPU node.
For the ablation study, learning rates of {0.1, 0.05, 0.01, 0.005,

0.001, 0.0005, 0.0001} are tested, and batch sizes of {2, 4, 8, 16, 32,
64} are tested (UNet3+ configurations of batch sizes greater than 8
were not feasible due to VRAM limitations). For experimentation
of the loss function, 35 ablations were conducted per model on the
composite loss function in Equation 2, the hyperparameters (𝛼 , 𝛽 , 𝛾 ,
and 𝛿) for the loss function selected from these experiments can be
seen in the fifth column of Table 1.

4.1.4 Quantitative Results. Table 1 shows 10 candidate models se-
lected for fine-tuning from the ablation study. At least one model
was picked from each architecture, alongside other models that
performed well in the evaluation. To ensure fairness, all P2ILF 2D
segmentation results were evaluated on our metrics before compari-
son (Available in appendix in Table C1). Table 3 shows the evaluation

results of the 10 chosen candidate models, prior to fine-tuning, after
fine-tuning, and after post-processing was applied. This resulted in
half of the models beating or matching the best results in P2ILF in
every metric, with 3 models outperforming in every metric outright.
The best performing candidate model was Candidate 2, provid-

ing an 11% increase (30% relative increase) in mean precision, a 5%
increase (over 13% relative increase) in mean Dice score, and a 6%
decrease (over 13% relative improvement) in mean symmetric dis-
tance, compared to the teams that competed in the P2ILF challenge
(see Table 3).

During inference, the time taken to infer and post-process masks
was recorded. An inference ranged from 9 to 15 milliseconds, whilst
post-processing added a time penalty ranging from 9 to 12 millisec-
onds.

4.1.5 Qualitative Results. Figure 3 shows six examples of images
from the P2ILF test set (3 images from patient 4 and 3 images from
patient 11) [Ali et al. 2025], annotated with masks. Sub-figure A is
the ground truth, Sub-figures B and C are from the best performing
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Patient 4 Patient 11

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

Fig. 3. Qualitative results on the P2ILF test set [Ali et al. 2025], with (A):
ground truth, (B): BHL predictions, (C) NCT predictions, (D) Candidate
2 initial training (E) Candidate 2 CE fine-tune, (F) Candidate 2 CE fine-
tune with post-process, (G) Candidate 2 CE+FTL fine-tune, (H) Candidate 2
CE+FTL fine-tune with post-process.

teams in the P2ILF challenge 2D segmentation task (BHL and NCT
respectively) [Ali et al. 2025]. It can be seen that both models under-
predict, and false positive pixel classification occurring when tools
are present in the image. Sub-figures D throughH all show variations
of Candidate 2, the most performant candidate model. Sub-figure
D shows Candidate 2 after initial training, prior to any fine-tuning.
This model also under-predicts (low recall), but qualitatively, rarely
makes false positive predictions (high precision); noticeably, the lig-
ament is not predicted on the images used from patient 4. Sub-figure
E shows Candidate 2 after being fine-tuned with the P2ILF training
set with solely cross-entropy loss, contours remain thin and the
model still under-predicts, landmark contours (especially the ridge)
are disconnected, the ligament on patient 4 remains unpredicted.
Sub-figure F shows the model used in sub-figure E after post process-
ing, Sub-figure G shows Candidate 2’s predictions after fine-tuning
with a combination of cross-entropy loss and Focal-Tversky loss, but

prior to mask post-processing. This model predicts landmarks more
often than the aforementioned models, but at the cost of thickening
contours; this promotion of making predictions now means that the
ligament of patient 4 is now predicted in the left-hand image. Fi-
nally, sub-figure H shows the cross-entropy and Focal-Tversky loss
fine-tuned Candidate 2 model, with our novel mask post-processing
applied. Contours are now of a consistent thickness, having thinned
out the thicker contours present in sub-figure E. Unlike the other
models shown, sub-figure H does not show contours with frequent
disconnections, forming clean contours around the liver landmarks.

4.2 3D Segmentation
4.2.1 Datasets. To ensure the robustness and generalisation of our
proposedmethod, we used two publicly available datasets of 3D liver
models, including a large dataset obtained from Zhang et al. that
combines three public datasets (3Dircadb [Soler et al. 2010], LiTS
[Bilic et al. 2023], and Amos [Ji et al. 2022]) [Zhang et al. [n. d.]]. The
other smaller dataset, consisting of 9 training and 2 test patients,
was sourced from the P2ILF challenge [Ali et al. 2025]. Data for
each patient includes a 3D liver model, saved as a wavefront object,
and an XML file containing the anatomical annotations. These files
are parsed to extract detailed contour information of the type of
anatomical structure (ridge or ligament) and the corresponding
indices of mesh vertices that define these contours. These extracted
annotations were then used to create numerical labels for the 3D
mesh vertices.

4.2.2 Evaluation Metrics. We assess the performance of our seg-
mentation framework using 3D Chamfer distance [Huang et al.
2023], which quantifies the point-to-point average distance between
the segmented landmarks and the ground truth. It functions by av-
eraging the minimum distance between points in two point clouds.
For two point sets 𝑋 and 𝑌 , it is defined as:

𝑑CD (𝑋,𝑌 ) =
1
|𝑋 |

∑︁
𝑥∈𝑋

min
𝑦∈𝑌

∥𝑥 − 𝑦∥𝑝 + 1
|𝑌 |

∑︁
𝑦∈𝑌

min
𝑥∈𝑋

∥𝑦 − 𝑥 ∥𝑝 , (11)

where ∥ · ∥𝑝 denotes the 𝑝-norm distance of the points.

4.2.3 Experimental Setup. Liver meshes were converted into point
cloud arrays for compatibility with PointNet++, typically containing
between 4000 and 15000 points. These models were standardised by
either furthest point sampling or padding the vertices to achieve a
fixed number of 4096 points. The labelled point clouds were then
encapsulated in compressed files that store the vertex coordinates
and their labels.

The dataset is partitioned into training, validation and test sets in
a 60:20:20 split, with data normalised for consistency purposes. Class
weights are computed using the inverse square root class frequency
weighting method, assigning higher weights to classes with lower
frequencies. This is necessary due to heavy class imbalance, with
low frequency in the ligament class compared to the liver class. We
augment the dataset to increase the diversity of the training data
to promote generalisation, improving its performance on unseen
samples. Three different augmentations were performed, including
upscaling, downscaling and rotations on the 𝑧-axis. Point clouds are
randomly scaled in the range of 65%–145% of their original size, and
then randomly rotated in the range of −180°-180°on the 𝑧-axis.
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To systematically evaluate the impact of the learning rate and loss
function components (Equation 7) on segmentation performance, a
structured grid search was performed. Each configuration is trained
independently, and the resulting segmentation quality is evaluated
using 3D Chamfer distance [Huang et al. 2023]. Learning rate se-
lection is performed separately through another dedicated ablation
experiment. The evaluated learning rates ranged from 0.00025 to
0.01, examining their effects on convergence stability and final seg-
mentation accuracy. All experiments were conducted on an NVIDIA
RTX 4070. A batch size of 32 was set and an AdamW optimiser with
default parameters was utilised for training [Loshchilov and Hutter
2019]. A learning rate scheduler was implemented to reduce the rate
once the validation loss plateaued and early stopping was applied if
the validation loss remained stagnant.

In our experiments, negative log-likelihood (NLL) losswas adopted
as the baseline due to its use as the standard loss in PointNet [Qi
et al. 2017a] and PointNet++ [Qi et al. 2017b]. We also evaluated the
weighted cross-entropy (wCE) loss, which incorporates the softmax
operation internally. Although both losses yield similar outcomes
when properly configured, the slight differences in their imple-
mentation can influence convergence behaviour and final accuracy,
making the inclusion of wCE a valuable alternative for comparison.
The optimal hyperparameters were selected based on perfor-

mance on the validation dataset. For the combined dataset [Zhang
et al. [n. d.]], the best-performing configuration used a weighted
cross-entropy weight of 𝛼 = 0.25, with geometry-based ridge and
ligament losses set at 𝜆ridge = 0.5 and 𝜆lig = 0.25, respectively. A
learning rate of 0.0075 was chosen, as it yields the lowest Chamfer
distances. For the P2ILF dataset, the best configuration selected used
𝛼 = 0.25, 𝜆ridge = 0.75, and 𝜆lig = 0, with an optimal learning rate
of 0.0005.

4.2.4 Quantitative Results. The quantitative results recorded during
the series of ablations are presented in Table 4 and Table 5. Table 4
presents our findings when our models are tested on the P2ILF
challenge dataset [Ali et al. 2025], and Table 5 shows our findings
tested on Zhang et al.’s combined dataset [Zhang et al. [n. d.]].
Furthermore, we include the results of the top two performing
teams from the P2ILF challenge paper as a means of comparison
against other literature. The two teams included from the P2ILF
challenge are: UCL, which achieved the best results on the ligament,
and NCT, which achieved the best results on the ridge. Each model
is tested on the hold-out set of the dataset it was trained on, as well
as the other dataset to verify generalisation capabilities.

Table 5 indicates that when testing on the combined dataset, the
two best performing configurations of PointNet++ with weighted
cross-entropy loss and PointNet with negative loss likelihood loss
achieve the lowest mean Chamfer distance and ultimately outper-
form the best performing configurations from the P2ILF challenge
[Ali et al. 2025]. However, it should be noted that despite the high
performance on the combined dataset, these configurations gener-
alise poorly to the P2ILF dataset, which can be observed in Table 4.
For instance, the PointNet++ configuration using weighted cross-
entropy loss records a mean Chamfer distance of 12.71𝑚𝑚 on the
combined dataset but deteriorates sharply to 41.99𝑚𝑚 when gener-
alising to the P2ILF dataset. Similarly, the PointNet model with NLL

Model Loss LR Train ch_r ch_l Mean

PointNet++ Midline, wCE 0.01 ‡* 19.70 13.46 16.58
PointNet++ NLL 0.0005 P2ILF 22.23 55.77 39.00
PointNet++ wCE 0.01 ‡* 23.72 60.26 41.99
PointNet++ wCE 0.0005 P2ILF 38.43 69.62 54.03
PointNet++ Midline, wCE 0.00075 P2ILF 36.11 116.10 76.11
PointNet NLL 0.01 P2ILF 95.85 73.46 84.65
PointNet++ NLL 0.005 ‡* F 115.54 115.54
PointNet NLL 0.00075 ‡* 199.94 F 199.94

Teams [Ali et al. 2025]
UCL PointNet++ NLL, HFD 0.001 P2ILF 27.97 24.47 26.22
NCT 2×MeshCNN wCE NA P2ILF 27.19 36.38 31.79

Table 4. Evaluation on the P2ILF challenge test dataset [Ali et al.
2025]. LR: learning rate. ch_r, ch_l: Chamfer distances (in𝑚𝑚) for ridge
and ligament, respectively. ‡: trained on combined dataset [Zhang et al.
[n. d.]]. * indicates evaluation on the unseen test set. Highlighted cells
represent a metric result that outperforms all P2ILF challenge teams. The
best results are in bold.

Model Loss LR Train ch_r ch_l Mean

PointNet NLL 0.00075 ‡ 7.92 16.62 12.27
PointNet++ wCE 0.01 ‡ 7.13 18.30 12.71
PointNet++ Midline, wCE 0.01 ‡ 11.62 21.57 16.60
PointNet++ Midline, wCE 0.00075 P2ILF* 19.50 23.21 21.35
PointNet++ NLL 0.0005 P2ILF* 28.79 17.95 23.37
PointNet NLL 0.01 P2ILF* 27.39 29.10 28.25
PointNet++ wCE 0.0005 P2ILF* 33.49 23.48 28.49
PointNet++ NLL 0.005 ‡ 32.21 30.39 31.30

Table 5. Evaluation on the combined test dataset [Zhang et al. [n. d.]].
LR: learning rate. ch_r, ch_l: Chamfer distances (in 𝑚𝑚) for ridge and
ligament. ‡: trained on combined dataset. *: evaluated on unseen test set.
The best results are in bold.

loss (LR = 0.00075) achieves a competitive 12.27𝑚𝑚 on the combined
dataset, yet it fails to generalise, reaching 199.94𝑚𝑚 on the P2ILF
dataset.

Furthermore, Table 4 shows that PointNet++ with combined mid-
line and weighted cross-entropy loss functions along with a learning
rate of 0.01, when trained on the combined dataset and tested on the
P2ILF dataset, outperforms all teams from the P2ILF challenge and
achieves the best results out of all our models tested on the P2ILF
data. Although the Chamfer distances reported by this model are
lower than those presented in Table 5, they nonetheless demonstrate
that our proposed method generalises effectively to unseen data,
as evidenced by its performance on the hold-out set. For example,
this method, using the midline loss at LR = 0.01, reduces the mean
Chamfer distance to 16.58𝑚𝑚 — a reduction exceeding 36% com-
pared to the UCL team’s method.

4.2.5 Qualitative Results. Figure 4 provides a comparative visual
analysis of segmentation outputs from models trained on the com-
bined dataset for four patients. Two from the P2ILF test set (patient
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4 and patient 11) [Ali et al. 2022] and two from the combined dataset
(LiTS-65 and Amos-119) [Zhang et al. [n. d.]]. Figure 5 is also in-
cluded as a comparison between the top performing teams in the
P2ILF challenge and our best model.

Ground Truth
PointNet
NLL

PointNet++
wCE

PointNet++
Midline, wCE
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ti
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t4
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t1
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Fig. 4. Qualitative comparison of segmentation results between our pro-
posed method and baselines from P2ILF [Ali et al. 2022] (patients 4 and 11)
and the combined dataset [Zhang et al. [n. d.]] (LiTS-65 [Bilic et al. 2023]
and Amos-119 [Ji et al. 2022]). Ligament points are coloured blue; Ridge
points are coloured red.

Ground Truth
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P2ILF
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P2ILF Ours
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Fig. 5. Qualitative comparison of segmentation results between the two
best teams from the P2ILF challenge [Ali et al. 2022] and our best model.
Test patients 4 and 11 are used. Ligament points are coloured blue; Ridge
points are coloured red. Points on the backside of the liver are displayed
with a lower alpha value.

The results indicate that the segmentation produced with the
midline loss is more closely bound to the ground truth. Notably, in
both patient 4 and patient 11 in Figure 4, the ridge structure is more
accurately delineated as the predicted midline closely curves around
the ridge, in contrast to the broader, region-like segmentations
observed with the weighted cross-entropy model. Although the
overall segmentation size remains relatively large for the ligament,

the localisation is notably improved with the midline loss, showing
a more generalised and anatomically consistent alignment.

These improved results are also evident in the comparisons made
in Figure 5. Segmentations produced by our model demonstrate
improvements over the two highest scoring P2ILF teams (Table 4).
In particular, the predicted ridge and ligament regions are more
accurately aligned with the ground truth in contrast to the P2ILF
predictions, which are erratic and incorrectly placed some points
behind the liver.
By incorporating a geometric aspect, the midline loss improves

localisation by effectively carving the ridge around the liver while
ensuring thin segmentation. Similar improvements in localisation
and accuracy are also observed on the dataset provided by Zhang
et al., particularly for the ridge segmentation.

4.3 3D-2D Registration
4.3.1 Evaluation Metrics. The evaluation metric used in the 3D-
2D registration task is reprojection error, this is the measure of
the distance between a set of projected points (i.e. our projected
landmarks) and the ground truth. Following in the steps of Ali et al.,
we utilise the Hausdorff distance metric to measure reprojection
error for the ridge and ligament landmarks [Ali et al. 2025]. The
reprojection error, 𝑅, can be defined as:

𝑅 =
1

|𝐶𝑀 |
∑︁
𝑐𝑀

𝑑𝐻 (Π(𝑐𝑀 ), 𝑐𝐼 ), (12)

where 𝐶𝑀 is the set of ground-truth landmark points, 𝐶𝐼 is the set
of vertex projections, 𝑑𝐻 represents the Hausdorff distance, and Π
is our 3D-2D registration (projection) function.

4.3.2 Quantitative Results. The landmark coefficients used in our
method for the ridge, ligament, and silhouette landmarks were 0.5,
1, and 0.5, respectively. This was chosen from the ablation study as
it produced the lowest total loss during optimisation (See Appendix
Table C2 for further detail). The ligament was emphasised due to its
strong influence on the liver’s orientation while covering the least
area [Ali et al. 2025].
Table 6 shows the reprojection errors in pixels for ridge (rpe_r)

and the falciform ligament (rpe_l) landmarks across patient 4 and
11. Our proposed method outperforms the best performing team in
the P2ILF challenge (NCT) [Ali et al. 2025] across the majority of
cases. Notably, a substantial reduction in ligament error (rpe_l) is
observed for patient 4, where our model yields errors in the range of
17.03–110.89 pixels, whereas previous methods report significantly
higher errors exceeding 400 pixels. This highlights the effective-
ness of our ligament-guided optimisation in scenarios where the
anatomy is relatively well preserved. In contrast, reprojection errors
for patient 11 are comparatively higher to patient 4. The ridge and
ligament landmarks in these images show increased variation, pri-
marily due to the visual complexity of the liver during laparoscopic
procedures. Such cases pose a greater challenge for rigid registration
methods.
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Image
P2ILF Avg. [Ali et al. 2025] NCT [Ali et al. 2025] Ours

rpe_r rpe_ rpe_r rpe_l rpe_r rpe_l

4_3 565.27 566.04 401.36 257.95 242.32 74.03
4_4 705.67 643.17 494.53 368.75 194.65 77.49
4_7 509.32 395.07 115.73 170.76 247.36 110.89
4_11 596.26 612.36 360.19 329.40 127.44 74.06
4_17 524.41 1076.29 323.60 458.22 110.48 17.03
4_20 608.47 611.06 183.58 393.21 211.72 21.95
4_21 567.00 — 159.30 — 156.16 —
4_22 550.47 — 212.36 — 110.61 —
11_2 985.24 899.17 1008.61 356.36 614.47 319.79
11_3 804.91 1085.95 842.67 177.02 598.03 292.25
11_4 854.54 531.91 720.35 185.74 447.03 326.91
11_5 813.15 572.49 788.44 311.52 484.11 326.66
11_6 928.90 582.23 807.11 543.89 476.27 340.11
11_7 889.76 798.65 360.03 408.01 443.85 297.38
11_8 790.64 536.70 329.80 237.32 419.09 336.92
11_9 707.74 541.87 247.95 270.65 419.26 335.89
Mean 710.92 675.21 466.80 319.20 331.43 210.81
Overall 693.07 393.00 271.12

Table 6. Reprojection errors in pixels from the two test patients. These errors are calculated for the ridge (rpe_r) and the falciform ligament (rpe_l) by
comparing the projected 3D ground-truth landmark vertices from the registered model with the corresponding 2D ground-truth pixel locations. NA indicates
cases with missing data. The overall mean is obtained by averaging rpe_r and rpe_l values.

Patient 4 Patient 11

(A)

(B)

(C)

Fig. 6. Qualitative results for patients 4 and 11.(A) Original laparoscopic
images, (B) NCT team’s registration results from P2ILF [Ali et al. 2025] and
(C) our registration model results

4.3.3 Qualitative Results. Figure 6 presents qualitative comparisons
for patient 4 and 11. For patient 4, the visual overlay of the regis-
tered 3D liver mesh onto the 2D image demonstrates accurate spatial
alignment. Compared to the NCT’s method from the P2ILF challenge
[Ali et al. 2025], our model more closely adheres to the anatomical
boundaries, particularly around the falciform ligament and ridge
structures. In several cases, the NCT’s overlay shows clear misalign-
ment or excessive deformation, often extending beyond the actual
liver boundaries in the laparoscopic image, indicating poor spatial
alignment. In contrast, our model produces a more anatomically
coherent fit that respects image boundaries whilst accurately tracing
liver contours. For patient 11, our method struggles with precise
alignment due to the limited visibility of the liver in the image.

Despite this, our model maintains a reasonable fit by aligning the
general liver shape and orientation.

5 DISCUSSION

5.1 2D Segmentation
Table 2 and Figure 3 sub-figure E show that the fine-tuned model,
with only cross-entropy loss, is precise when predicting, however
it is visible that the recall of the model is low. Due to this under-
prediction, the benefits of post-processing are minimised (see sub-
figure F) due to the thin and sparse landmark predictions outputted
by the model compared with sub-figures G and H. Table 2 verifies
this, showing much smaller improvements between tune and post
(and lower overall values) when compared to Table 3.

Table 3 and sub-figure G from Figure 3 show a model that is less
prone to under-prediction when compared to sub-figure E, predict-
ing a greater proportion of the landmarks, albeit with thicker con-
tours. This is due to the Focal-Tversky loss component promoting
landmark predictions, with the focal component adding emphasis
to predictions that are of low certainty (i.e. difficult predictions).
Post-processing (sub-figure H) mitigates over-prediction by thin-
ning the contours, as well as connecting nearby components, the
contours are also smoothed. Post-processing improves the quality
of the contours, as shown by the increase in the DSC and symmetric
distance scores in Table 3.
In regards to future direction, Pei et al.’s approach of estimat-

ing depth masks focuses on providing clearer information to the
CNN, such that it can predict with greater accuracy [Pei et al. 2024].
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Labrunie et al. utilise distance maps as opposed to binary masks
when training their 3D-2D registration model [Labrunie et al. 2024],
an approach that can be applied to 2D segmentation. The mask
post-processing presented in this report lays out the fundamentals
of this approach, with many other aspects yet to be explored, such
as mask correction models. There is a question of whether DSC is an
appropriate metric, due to the linear nature of the landmarks; alter-
natives such as centre line Dice (clDice) should have their suitability
investigated in this field [Shit et al. 2021].

5.2 3D Segmentation
Our experimental results provide compelling quantitative evidence
for the efficacy of our proposedmethod in 3D liver landmark segmen-
tation. By leveraging a significantly larger combined dataset of 300
unique 3D liver models and incorporating our geometry-constrained
midline loss, our PointNet++ model achieves mean Chamfer dis-
tances of 16.60𝑚𝑚 on the combined dataset and 16.58𝑚𝑚 on the
P2ILF dataset. These outcomes highlight the limitations of earlier
methods, particularly those from the P2ILF challenge teams, which
were constrained by limited training data and struggled to gener-
alise. The best results on the combined dataset, even when using
a model trained solely on the smaller P2ILF data, demonstrate the
improvements in generalisations achieved by our method. The in-
corporation of the midline loss is particularly important for enabling
robust performance across varied liver datasets. As shown in Table 4,
the PointNet++ model with midline and weighted cross-entropy
loss, when trained on the smaller P2ILF dataset with a learning rate
of 0.00075, still performed well on the combined dataset, achieving
a mean Chamfer distance of 21.35𝑚𝑚 compared to 16.60𝑚𝑚 for the
model trained on the larger dataset with a learning rate of 0.01
Furthermore, visual comparisons reveal that segmentation out-

puts using the midline loss exhibit a distinct, precise curvature of
the ridge and are more tightly aligned with the ground truth. In
contrast, predictions from models trained with wCE loss tend to be
broader and less defined, resembling region-like segmentations. The
improved localisation achieved by carving the ridge around the liver
confirms the enhanced geometric fidelity of our method and demon-
strates its ability to generalise to unseen data from different datasets.
This is especially evident when comparing performance on the com-
bined dataset to the P2ILF dataset, where our method substantially
reduces the mean Chamfer distance and outperforms previous con-
figurations. Overall, the combination of a robust training dataset
and a geometry-aware loss function yields improvements in both
quantitative metrics and qualitative assessments, providing a strong
foundation for future advancements in 3D liver segmentation.
In terms of future research, the paper on deep point-graph rep-

resentation [Xie et al. 2025] leverages a hybrid point-graph rep-
resentation that combines point-based learning with graph neu-
ral networks and an implicit surface decoder to preserve intricate
anatomical topology. This method ensures that connectivity and fine
surface details are maintained, an aspect that could greatly enhance
the geometric fidelity of liver segmentations. In contrast, WS-TIS
[Wang et al. 2024] adopts a weakly supervised, two-stage approach
that couples multi-label classification with instance segmentation.

By efficiently utilising limited annotations through feature disen-
tanglement and gated attention mechanisms, it achieves robust
segmentation accuracy with reduced labelling requirements. Both
techniques, although applied to different anatomical contexts, offer
promising strategies that could be implemented in the liver segmen-
tation framework to improve both precision and generalisability in
capturing complex liver structures.

5.3 3D-2D Registration
Table 6 and Figure 6 compare our registration approach against the
top-performing team, NCT, in the P2ILF challenge [Ali et al. 2025].
For patient 4, the proposed method achieves substantially lower
reprojection errors, particularly for the ligament landmarks, where
we observe a decrease in error from over 400 pixels (as reported by
NCT) to a range between 21.95–110.89 pixels. This improvement
is a direct result of the ligament-guided optimisation, which helps
preserve anatomical structure during alignment, especially when
the liver appears relatively undeformed in the laparoscopic image.
Figure 6 sub-figure C shows that our projected mesh fits more tightly
within the visible liver region compared to the NCT prediction (sub-
figure B), which often overshoots the anatomical boundaries. For
patient 11 however, the registration proves more difficult; Table 6
shows higher errors across both ridge and ligament landmarks. This
is due to the poor visibility observed in patient 11’s laparoscopic
scenes, which makes registration difficult.

To address this, future work could incorporate deformable regis-
tration frameworks, such as FEA [Labrunie et al. 2024], to simulate
non-rigid liver behaviour under surgical conditions. This would
enable more realistic transformations, especially in cases of extreme
liver deformation. Notably, our method includes silhouette-based
supervision during optimisation, which improves alignment in the
𝑧-direction. Unlike ridge and ligament, silhouette landmarks pro-
vide extensive spatial information, offering greater insight into the
overall shape, which helps resolve the depth ambiguity common
in 3D-2D registration. As shown in sub-figure C, this results in a
better spatial fit, particularly around the liver’s overall shape.

6 CONCLUSION
We presented a fully automated pipeline for augmenting laparo-
scopic liver surgery with machine-assisted segmentation and regis-
tration. Our 2D segmentation framework evaluated four UNet vari-
ants and DeepLabV3+with a composite loss. A novel post processing
step removed low confidence false positives, applied smoothing and
used skeletonisation to refine anatomical landmarks. Trained on
the L3D dataset and fine-tuned on P2ILF images, the best model
achieved up to a 30% relative increase in precision and 13% im-
provement in Dice score and symmetric distance over the P2ILF
challenge’s leading teams.
In 3D segmentation, we used PointNet++ with point clouds of

preoperative liver meshes and introduced the innovative midline
loss. On both the combined public dataset and the P2ILF test set, our
methodology reduced mean Chamfer distances by over 36% com-
pared to previous baselines, demonstrating superior generalisation
to unseen livers.
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We then employ an iterative differentiable rendering registra-
tion procedure that refines rigid pose parameters by minimising
Chamfer distances between the projected 3D landmarks to their
2D counterparts. We perform 30 random initialisations and select
the optimal fit based on the validation loss. This approach achieves
a reduction of over 31% in mean reprojection error compared to
leading P2ILF methods.
Finally, we implemented the pipeline on a Varjo XR-4 headset

using a custom C++ SDK to extract camera footage, and OpenGL to
perform 3D rendering.
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A PROJECT MANAGEMENT

A.1 Supervisor and Theme
Once our group was formed, it was decided that the requirements
for a project was not found in a specific topic, but in desirable
aspects within the project and area of research. The primary re-
quirement was that of producing an impactful piece of work, with
a view to possibly publish any novel methods and findings. Many
potential supervisors were contacted and discussed with, with vary-
ing levels of agreement within the group on the suitability of their
field of research. Once we met with Dr. Sharib Ali, he prepared a
presentation and proposed that we worked on his ARMADILLO
project, originating as a challenge he hosted at MICCAI 2022. AR-
MADILLO is an end-to-end 3D-2D liver registration pipeline that
utilises segmentation models and a 3D-2D registration solution
reliant on segmentation outputs, combined with a hardware imple-
mentation (Varjo XR-4 FE headset). The scale of this project was
not understated, but it sparked interest in the entire group with the
project’s novelty and potential impact, leading us to go ahead with
his project.
The group met with Sharib once every two weeks, changing to

once every week as we got closer to the MIUA submission deadline.
After the initial meetings where our understanding of the technical
aspects of the project was cemented, each meeting consisted of
presenting developments in each of the four areas of work: 2D
segmentation, 3D segmentation, 3D-2D registration, andAugmented
Reality development. This would then allow any queries to be asked,
whilst also making clear in which areas the project was thriving or
struggling.

A.2 Group organisation
The group was organised into four sub-groups, one for each task.
This consisted of teams for 2D segmentation, 3D segmentation, 3D-
2D registration, and augmented reality. 2D segmentation consisted
of Jibran and Abhinav; 3D segmentation consisted of Karim and Aod-
han; 3D-2D registration consisted of Najmi and James; augmented
reality was developed by Theodora with assistance from James. At
a later date James also worked on 2D segmentation. Each team
followed an agile-like development strategy wherein each team
conducted background research into relevant literature and associ-
ated methods, before implementing and testing these methods for
suitability in their respective tasks. Once we reviewed quantitative
and qualitative evidence, new methods were chosen for exploration
or successful methods were refined further with novel additions
added to develop successful approaches to each task, such as 3D
segmentation’s midline loss or 2D segmentation’s post-processing.
Group communication was primarily done in-person, as many

members worked on campus almost daily due to the scale of the
project. Outlook was used to schedule formal meetings, with in-
formal communication occurring over mobile devices. A GitHub
organisation was created for the project, with each task having its
own repository within the organisation, and development occur-
ring in the form of pair programming or individually within close
vicinity of one another. Consequently, Git was used as a form of
version control for coding aspects within the project, with members
on each team working on separate branches for each feature and

updating changes regularly during development. Overleaf was used
in writing the group report, individual reports and the poster to
provide a shared writing space and also to provide version control
for writing aspects of the project.

Meetings occurred every twoweeks for themajority of the project.
Initial meetings revolved around the analysis and discussion of re-
searched methods that could be used for each task. This formed
the basis of our understanding, with our initial experiments and
approaches to tasks being decided here. As time progressed, meet-
ings shifted focus to the progress we made and results we could
demonstrate, with queries being asked to our supervisor to further
progress on each task. At these meetings, it became clear what ap-
proaches would work and which approaches would not work, as
well as any necessary adjustments to be made. This style of meet-
ing happened more frequently towards the end of the project to
ensure our work was of the highest standard. At each opportunity,
we utilised our supervisor’s expertise and contacts within the field.
This included virtual meetings with post-doc students from around
the world. This was especially useful in early stages of the project,
when it came to contacting authors of relevant literature for further
clarifications on their works and accessing pre-published work. In
the latter stages of the project, our supervisor was able to provide
data from teams participating in the P2ILF challenge, from which
we could compare our own quantitative and qualitative results.

These meetings ensured every member of the group was regularly
updated with the latest developments both in code and in report
writing. Tasks were also assigned to each member during these
meetings, in the presence of our supervisor, that were often due
for the next scheduled meeting. Through this system of regular
discussion of updates and regular goal-setting, each member of the
group was kept on track and it was ensured that deadlines were met
on time. Care was also taken at each meeting to make sure that each
member was assigned a task of similar workload, such that nobody
was without work and such that each member had an manageable
amount of work. In the rare case that one team struggled to complete
a task on time, other group members helped out where possible to
ensure the smooth development of the project.

A.3 Planning and execution
Figure A1 shows the original project timeline, while Figure A2
shows the timeline as it actually occurred. Although the two charts
align closely in most respects, the main deviation occurred when the
opportunity to submit two papers to the MIUA conference presented
itself towards the end of the project. Preparing this submission
demanded a significant investment of time and resources, which
necessitated a temporary reallocation of effort away from some
planned tasks.

Despite this disruption, we were able to adjust our schedule and
recover lost time without compromising the overall deadline date.
In particular, the decision to split the team into sub-groups, one
focusing on 2D segmentation, another on 3D segmentation, and
a third on the early stages of registration proved very valuable.
By running these teams in parallel, we retained enough flexibility
to deal with the additional workload. As a result, not only did we
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Fig. A1. A Gantt chart showing the initial project plan.
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Fig. A2. A Gantt chart showing the final project timeline.

maintain momentum on the core deliverables, but we also succeeded
in submitting two conference papers to MIUA.

B SELF-REFLECTION AND SOFT SKILLS ACQUIRED.
In conclusion, we believe the project to be an overall success. This
is largely attributed to the completion of all tasks associated with
the project, including the implementation of concrete methods by
which we can perform 2D segmentation of images and 3D segmen-
tation of liver models to form an automated end-to-end pipeline by
which we can perform 3D-2D registration and have this solution
presented on an augmented reality platform. Furthermore, when
compared to other teams participating in the registration task (from

the P2ILF challenge paper), our methods were able to outperform all
six competing teams by a substantial margin in all three tasks, which
demonstrate the practical successes of our solution. Whilst not an
original aim set out at the beginning of the project, our work in the
2D segmentation and 3D segmentation tasks led to the creation of
novel approaches which ultimately led to us submitting two papers
to MIUA 2025, contributing to another success of the project.

We are satisfied with the overall success of the project, although
in hindsight, we noticed a number of optimisations we could have
made to our workflow that would have saved significant delays
between tasks and ultimately could have avoided the busy period
experienced before the final deadline. Difficulties arose due to 3D-2D
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registration’s dependency on 2D and 3D segmentation tasks. Due to
difficulties associated with 2D segmentation tasks, a group member
was borrowed from the 3D-2D registration team to help. This was
effective in finalising a solution to 2D segmentation, however, the
delay was impactful and further passed on to aspects of 3D-2D
registration due to the reduced workforce on this team during that
time. Additionally, submitting two full conference papers to MIUA
was considered an achievement for the group.

From a managerial perspective, our use of GitHub Enterprise
(using an organisation) and version control was deemed an effective
approach to working on the project - one that worked well for all
members of the group. In this way, each group member, and the su-
pervisor, was kept fully up-to-date on the latest developments from
everyone in the project and new tasks were given out in response
to these developments, ensuring that no one remained idle between
meetings. This allowed the group to assess overall progress on the
project at any given time, allowing for planning of next steps and
the adjusting of project timings so that we could stay on track for
set goals and the final deadline. This approach was amplified by
our group’s persistent and clear communication outside of these
meetings, alongside work often performed in the presence of other
group members.
As a group, we were able to learn and gain experience with a

wide range of new soft skills associated with the project, including
interpersonal skills, detailed communication and time management.
Through consistent regular meetings with a more experienced aca-
demic and researcher where we demonstrated our progress towards
a larger goal, we were able to experience a style of meeting akin
to that commonly seen in the workplace where larger projects are
concerned. This taught us to convey concepts in a way where any-
one could understand, as separate teams were not entirely familiar
with the works being researched in each task, thus developing our
professional communication skills. By balancing work with this
project against other university deadlines and exams, as well as two
submissions to a conference, we were able to experience a fast paced,
high workload. This constantly forced us to adapt to quick changes
in direction. Through this, we were able to learn how to structure
our time better and manage the multiple tasks we had at once, thus
improving our skills in adaptability and time management. Finally,
as the project was largely focused in areas in which none of us had
prior experience, we were very much challenged in our abilities of
problem solving, critical thinking and teamwork whilst theorising
and attempting to solve our respective tasks. This further devel-
oped these soft skills acquired during the project, which will no
doubt help each member of the group in our future ventures in the
workforce.
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C TABLES AND FIGURES

Team P ↑ P̄ ↑ D ↑ D̄ ↑ G ↓ Ḡ ↓

BHL 0.24/0.41/0.46 0.37 0.22/0.43/0.50 0.38 0.70/0.43/0.40 0.51
NCT 0.20/0.31/0.41 0.31 0.24/0.32/0.52 0.36 0.52/0.51/0.32 0.45
UCL 0.11/0.43/0.38 0.31 0.13/0.48/0.40 0.34 0.73/0.63/0.42 0.59
VIP 0.11/0.23/0.19 0.18 0.16/0.33/0.29 0.26 0.71/0.44/0.62 0.59
VOR 0.10/0.15/0.16 0.13 0.15/0.24/0.25 0.21 0.70/0.65/0.66 0.67

Table C1. P2ILF challenge 2D segmentation task results [Ali et al. 2025]. Teams are evaluated using our implementations of the following metrics. P is precision,
D is DSC, and G is the symmetric distance metric in Equation 10. Results are in the order of ridge, falciform ligament, and silhouette. P̄, D̄, and Ḡ are the mean
across the three landmarks. The best mean results are highlighted in bold.

Ridge Ligament Silhouette Loss (4_7) Loss (4_11) Loss (4_17) Loss (11_2) Loss (11_6) Loss (11_7) Mean

0.5 1 0.5 0.275 0.284 0.240 0.569 0.570 0.529 0.411
0.5 1 1 0.398 0.419 0.374 0.761 0.764 0.717 0.572
1 0.5 1 0.453 0.481 0.459 0.770 0.782 0.737 0.614
1 1 0.5 0.364 0.375 0.332 0.705 0.704 0.659 0.523
5 1 1 1.188 1.233 1.203 1.999 1.961 1.943 1.588
1 5 1 0.762 0.732 0.512 1.965 1.851 1.780 1.270
1 1 5 1.462 1.573 1.469 2.408 2.527 2.365 1.967
0.5 5 1 0.665 0.635 0.430 1.773 1.732 1.679 1.152
1 5 0.5 0.638 0.619 0.388 1.749 1.722 1.485 1.100

Table C2. Loss values for different combinations of ridge, ligament, and silhouette weight coefficients. The loss metrics are reported for multiple patient
instances (4_7, 4_11, 4_17, 11_2, 11_6, 11_7), along with the mean loss. Lower loss values indicate better performance.
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