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Abstract. Anatomical landmark segmentation involves identifying spe-
cific points or regions within an anatomical structure and is integral to
diagnostic processes and surgical guidance. This paper focuses on the
segmentation of landmarks in 3D liver models in order to highlight key
structures such as the falciform ligament and the liver ridge. The study
is motivated by the need to support intraoperative laparoscopic regis-
tration tasks, aiming to enhance preoperative-to-intraoperative image
fusion and thereby improving the localisation of tumours and vessels
within the liver. As current practices typically rely on manual annota-
tion, a process that is time-consuming and prone to human error when
performed by less experienced operators, there is a clear need for a more
efficient and reliable solution. Some recent works on landmark prediction
in 3D liver models either over-predict or under-predict these landmarks.
To overcome these challenges, we introduce a novel loss function that en-
forces geometric constraints by aligning segmentation predictions with a
computed central anatomical midline. This strategy not only improves
overall anatomical alignment but also ensures that the predictions remain
thin and precise, reducing the occurrence of overly broad or misaligned
outputs. This approach is utilised in conjunction with the PointNet++
architecture, trained on an extensive combined dataset composed of three
smaller datasets, alongside the P2ILF challenge dataset, amounting to
300 unique 3D liver models in total. Our results indicate that our pro-
posed solution forms a robust and precise approach, laying a solid foun-
dation for future advances and feasibility in 3D-2D liver registration for
intraoperative use. To allow reproducibility of this work, we have shared
our code at: https://github.com/ARMADILLO-VISION/midline-loss

Keywords: Deep Learning · Midline Loss · 3D Landmark Segmentation
· Laparoscopic Liver Surgery · PointNet++

1 Introduction

Anatomical 3D landmark segmentation is an essential task in medical image
analysis, as it enables the precise localisation of anatomical structures within
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3D models [17,16]. The importance of using 3D models via preoperative 3D ren-
dering compared to conventional 2D scans for planning surgical strategies can im-
prove understanding of liver anatomy and help in tissue-preserving surgery [15].
3D landmark segmentation is particularly important in the context of preoperative-
to-intraoperative image fusion [12,6,3]. For this reason, the accurate alignment
of 3D models extracted from 3D CT/MRI scans acquired prior to surgery with
the intraoperative 2D liver images allows for the understanding and location
of important anatomical structures relative to the patient’s anatomy during
surgery [12,10,6,2,11].

To achieve a high degree of accuracy in such 3D-2D registration, it is es-
sential to have an automated method for 3D liver landmark segmentation that
can accurately predict the positions of key anatomical landmarks on unlabelled
liver models [12,10]. The current practice of manual annotation of preoperative
3D liver models is time-consuming and prone to error [22], which motivates the
development of a method that can automatically segment the key anatomical
landmarks in liver models [12,20]. These landmarks can then be used for the
registration process, as they provide reference points for aligning the 3D liver
models with the 2D intraoperative images, which can also be done using segmen-
tation of similar anatomical landmarks. In this way, 3D registration is performed
automatically, however, less desirable manual and semi-automatic methods still
exist for this task.

At present, a study conducted by Acidi et al. [1] shows that the most common
reported method of registration is manual registration, with 11 studies proposing
this approach as of 2023. This is followed by 9 studies conducted into semi-
automatic approaches of registration [1]. There is a clear lack of studies into
automatic methods of registration, with 3 studies reporting entirely automated
approaches [26,23,14]. A large factor behind this is the lack of publicly available
datasets with annotated 3D liver models [10,4], with many datasets containing
a limited number of samples [1]. As a result, there is a need for a larger amount
of data to be used in deep learning tasks in automated registration, which forms
the main approach to our presented solution. Other literature suggests data
synthesis as an alternative means to this problem [12].

The recent P2ILF challenge competition [3] curated and released the first
comprehensive dataset in this domain with 11 patients, comprised of 9 patients
for training and 2 for testing. The authors also performed an objective com-
parison of methods for 2D landmark segmentation, 3D landmark segmentation
and preoperative-to-intraoperative fusion. A number of deep learning methods
used by six participating teams were evaluated. For the 3D anatomical land-
mark segmentation, teams used MeshCNN [7], Graph Convolutional Network
(GCN) [9], and PointNet-based architectures [18]. The results of these methods
have shown promise, however, they display a high degree of variability with de-
pendency on the quality of the training data. Issues such as under-predicting
or over-predicting false positive regions were observed, indicating the need for
further improvements in this area of research.
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In this work, we propose an approach for anatomical 3D landmark segmenta-
tion that addresses these limitations. Our methodology enhances segmentation
precision by training the PointNet++ architecture [19] on a large combined
dataset of liver models, resulting in an improvement of the generalisation ca-
pabilities and robustness of the network across diverse patient livers. In ad-
dition, we introduce a novel midline loss function that addresses issues with
over-segmenting, generating aligned and thin segmentation outputs resembling
the ground truth data. To achieve this, the specialised loss function penalises de-
viations from a calculated central anatomical midline, promoting consistent and
accurate landmark delineation while also discouraging overly large predictions,
enforcing thin and anatomically plausible structures. Our approach demonstrates
generalisability on unseen scenarios, surpassing baseline with conventional losses
and the top-performing P2ILF challenge teams.

2 Methodology

The proposed method uses the PointNet++ neural network in conjunction with
an innovative loss formula and is trained on a larger combined dataset, allow-
ing for more accurate segmentation in unseen and unlabelled liver models, thus
addressing current challenges in landmark prediction. It is this sourcing of in-
creased data samples along with the implemented midline loss that forms the
novelty of this approach. The basis of the loss function is detailed in the following
methodology.

2.1 Midline Loss

To achieve precise and thin segmentation of anatomical structures, we propose
a midline loss function (Lmidline) that explicitly incorporates geometric con-
siderations. This loss is designed to align the segmentation predictions with a
computed central anatomical midline derived from ground-truth labels, as well
as penalising large deviations that result in overly broad or misaligned outputs.

Let X be the set of predicted 3D segmentation points for any given class. To
estimate the central anatomical axis, we perform a weighted Principal Compo-
nent Analysis on X , using the segmentation probabilities as weights. This yields
a principal direction vector v, which draws the best fit axis through the subset of
predicted points X and naturally emphasises high confidence points while down
weighting noisy outliers. We then sample along v to generate the set of candidate
midline points C.

Each candidate point ck ∈ C is refined via a differentiable soft-snapping
process. This process serves as a smooth projection mechanism, producing a
refined point c∗k using a softmax-weighted combination of all segmentation points:

c∗k =

N∑
i=1

αi xi, where αi =
exp

(
−λ ∥xi − ck∥

)∑N
j=1 exp

(
−λ ∥xj − ck∥

) , (1)
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The set of refined points Sp defines the predicted midline.
To measure alignment between the predicted segmentation and the midline,

each point xi ∈ X is softly projected onto Sp, producing a set of projected points

X̂ . These projections are subsequently used in the loss calculation to penalise
deviations from the midline in a differentiable manner.

The midline loss consists of two complementary components: a deviation loss
(Ldev) and an alignment loss (Lalign). The deviation loss acts as a thickness
controller by penalising the distance between each segmentation point and its
nearest soft projection onto the computed midline. In doing so, it encourages
the segmentation to remain narrow and closely bound to the midline, thereby
reducing the overall thickness of the predicted structure. To control outliers,
distances are clamped as needed. A visualisation of this process is shown in
Fig. 1. Formally, the deviation loss is defined as:

Ldev =

∑N
i=1 wi

(
eα∥xi−x̂i∥ − 1

)
∑N

i=1 wi + ϵ
, (2)

where xi are the segmented points, x̂i denote their differentiable projections onto
the midline, wi are the segmentation probabilities, and ϵ is a small constant to
prevent division by zero.
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Fig. 1. Visualisation of the penalty computation pipeline for ligament and ridge re-
gions. From left to right: raw segmentation predictions, computed midlines, and result-
ing deviation-based penalty maps. For ligament, penalty values range from low (blue)
to high (green); for ridge, low penalties are shown in red, increasing to yellow for higher
deviations from the midline.

In parallel, the alignment loss (Lalign) ensures that the predicted midline
(Sp) aligns closely with the ground truth midline (SGT ). The predicted midline
is derived using wPCA and soft-snapping, while the ground truth midline is
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obtained by uniformly resampling the ground-truth annotated points. A soft-
assigned Chamfer distance measures the spatial discrepancy between these mid-
lines:

Lalign =
1

2

( 1

|Sp|
∑

sp∈Sp

dCD(sp, SGT) +
1

|SGT|
∑

sGT∈SGT

dCD(sGT, Sp)
)
, (3)

where dCD(·, ·) denotes the Chamfer point-to-midline distance.
The overall midline loss is then defined as:

Lmidline = (1− λm)Ldev + λm Lalign, (4)

with the hyper-parameter λm balancing the contributions of the deviation and
alignment losses.

To balance the geometry-based midline loss with the weighted cross-entropy
loss (LwCE), whose magnitudes may differ significantly during training, we in-
troduce a dynamic scaling factor. This scaling factor ensures that both the geo-
metric constraints and region-based accuracy are optimised simultaneously. The
scale is computed as:

β =
LwCE

1
2

(
Lridge
midline + Llig

midline

)
+ ϵ

, (5)

where Lridge
midline and Llig

midline each correspond to the same midline formulation
(Lmidline) computed for the ridge and ligament structures separately. Finally,
the combined total loss, incorporating weighted cross-entropy, is expressed as:

Ltotal = α LwCE + β
(
λridge Lridge

midline + λlig Llig
midline

)
. (6)

2.2 PointNet++

The PointNet++ architecture used in our approach is designed to process and
segment 3D point clouds directly, making the conversion of 3D data into point
cloud representations a necessary step in our method. The implementation used
is adapted from the repository by Yan [25] and is based on the work demonstrated
by Qi et al [19]. The PointNet++ network was trained on the datasets using
different loss functions, including the novel midline loss. The optimal hyperpa-
rameters and loss functions were selected through an ablation study, detailed in
subsection 3.2. The standard PointNet architecture was also tested [18].

3 Experimental Setup

3.1 Dataset and Data Preparation

To ensure the robustness and generalisation of our proposed method, we used
two publicly available datasets of 3D liver models, including a large dataset ob-
tained from Zhang et al. [27] that combines three public datasets (3Dircadb [21],
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LiTS [5], and Amos [8]). The other smaller dataset, consisting of 9 training and
2 test patients, was sourced from the P2ILF challenge [4]. Data for each patient
includes a 3D liver model, saved as a wavefront object, and an XML file con-
taining the anatomical annotations. These files are parsed to extract detailed
contour information of the type of anatomical structure (ridge or ligament) and
the corresponding indices of mesh vertices that define these contours. These ex-
tracted annotations were then used to create numerical labels for the 3D mesh
vertices. Initially, all vertices are assigned a background label, which is subse-
quently updated to reflect the presence of specific anatomical features based on
the parsed contour data.

To prepare the data for compatibility with the PointNet++ model, the 3D
meshes were converted into point cloud arrays. These point clouds typically
contain between 4000 and 15000 points, with each point inheriting the label
corresponding to the anatomical structures previously identified in the mesh.
Our conversion process ensures that each point cloud is standardised by either
furthest point sampling or padding the vertices to achieve a fixed number of
4096 points.

Considering the P2ILF dataset contains only 11 patients in total, two patients
are pre-emptively reserved for the test set. From the remaining 9, we adopt
a 7–2 split for training and validation. This maintains a reasonable balance
between training capacity and validation reliability, given the limited data, while
preserving subject independence across all subsets. A similar ratio is used for
consistency when applying the split to the combined dataset.

The data is normalised, ensuring all datasets share the same normalisation
parameters. Class weights are computed using the inverse square root class fre-
quency weighting method, assigning higher weights to classes with lower frequen-
cies. This is necessary due to heavy class imbalance, with very low frequency in
the ligament class compared to the liver class.

We apply augmentation techniques to increase the diversity of the training
data and improve the model’s generalisation capabilities, as well as its perfor-
mance on unseen samples. Three different augmentations were performed, in-
cluding upscaling, downscaling and rotations on the z-axis. Point clouds are
randomly scaled in the range of 65%-145% of their original size, and then ran-
domly rotated in the range of −180◦-180◦on the z-axis.

3.2 Ablation Study and Hyper-Parameter Selection

To systematically evaluate the impact of the learning rate and loss function com-
ponents (Equation 6) on segmentation performance, a structured grid search was
performed. Each configuration is trained independently, and the resulting seg-
mentation quality is evaluated using 3D Chamfer distance [24]. Learning rate
selection is performed separately through a separate ablation. The evaluated
learning rates ranged from 0.00025 to 0.01, examining their effects on conver-
gence stability and final segmentation accuracy. All experiments were conducted
on an NVIDIA RTX 4070. A batch size of 32 was set and an AdamW optimiser
with default parameters was utilised for training [13]. A learning rate scheduler
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was implemented to reduce the learning rate once the validation loss plateaued
and early stopping was applied if the validation loss remained stagnant.

In our experiments, negative log-likelihood (NLL) loss was adopted as the
baseline due to its use as the standard loss in PointNet [18] and PointNet++ [19].
We also evaluated the weighted cross-entropy (wCE) loss, which incorporates
the softmax operation internally. Although both losses yield similar outcomes
when properly configured, the slight differences in their implementation can
influence convergence behaviour and final accuracy, making the inclusion of wCE
a valuable alternative for comparison.

The optimal hyper-parameters were selected based on performance on the
validation dataset. For the combined dataset [27], the best-performing configu-
ration used a weighted cross-entropy weight of αwce = 0.25, with geometry-based
ridge and ligament losses set at λridge = 0.5 and λlig = 0.25. A learning rate of
0.0075 was chosen, as it yields the lowest Chamfer distances. For the P2ILF
dataset, the best configuration selected used αce = 0.25, λridge = 0.75, and
λlig = 0, with an optimal learning rate of 0.0005.

4 Results

4.1 Evaluation Metrics

We assess the performance of our segmentation framework using 3D Cham-
fer distance, which quantifies the point-to-point average distance between the
segmented landmarks and the ground truth [24]. It functions by averaging the
minimum distance between points in two point clouds. For two point sets X and
Y , it is defined as:

dCD(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

∥x− y∥p +
1

|Y |
∑
y∈Y

min
x∈X

∥y − x∥p, (7)

where ∥ · ∥p denotes the p-norm distance of the points.

4.2 Quantitative Results

The quantitative results recorded during the series of ablations are presented in
Table 1 and Table 2. Table 1 presents our findings when our models are tested
on the P2ILF challenge dataset [4] and Table 2 shows our findings tested on
the combined dataset [27]. Furthermore, we include the results of the top two
performing teams from the P2ILF challenge paper as a means of comparison
against other literature [4]. The two teams included from the P2ILF challenge
are: UCL, which achieved the best results on the liver ligament, and NCT, which
achieved the best results on the liver ridge. Each model is tested on the hold-
out set of the dataset it was trained on, as well as the other dataset to verify
generalisation capabilities.

Table 2 indicates that when testing on the combined dataset, the two best
performing configurations of PointNet++ with weighted cross-entropy loss and
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Table 1. Evaluation on the P2ILF challenge test set [4]. LR: learning rate. ch r, ch l :
Chamfer distances (in mm) for ridge and ligament. ‡ : trained on combined dataset [27].
*: evaluation on unseen test set. Highlighted cells outperform all P2ILF teams; best
results are bold.

Model Loss LR Train ch r ch l Mean

PointNet++ Midline,wCE 0.01 ‡* 19.70 13.46 16.58

PointNet++ NLL 0.0005 P2ILF 22.23 55.77 39.00

PointNet++ wCE 0.01 ‡* 23.72 60.26 41.99

PointNet++ wCE 0.0005 P2ILF 38.43 69.62 54.03

PointNet++ Midline,wCE 0.00075 P2ILF 36.11 116.10 76.11

PointNet NLL 0.01 P2ILF 95.85 73.46 84.65

PointNet++ NLL 0.005 ‡* F 115.54 115.54

PointNet NLL 0.00075 ‡* 199.94 F 199.94

Teams [3]

UCL PointNet++ NLL,HFD 0.001 P2ILF 27.97 24.47 26.22

NCT 2×MeshCNN wCE – P2ILF 27.19 36.38 31.79

Table 2. Evaluation on the combined test set [27]. LR: learning rate. ch r, ch l : Cham-
fer distances (in mm) for ridge and ligament. ‡ : trained on combined dataset. *: eval-
uation on unseen test set. Best results are bold.

Model Loss LR Train ch r ch l Mean

PointNet NLL 0.00075 ‡ 7.92 16.62 12.27

PointNet++ wCE 0.01 ‡ 7.13 18.30 12.71

PointNet++ Midline,wCE 0.01 ‡ 11.62 21.57 16.60

PointNet++ Midline,wCE 0.00075 P2ILF* 19.50 23.21 21.35

PointNet++ NLL 0.0005 P2ILF* 28.79 17.95 23.37

PointNet NLL 0.01 P2ILF* 27.39 29.10 28.25

PointNet++ wCE 0.0005 P2ILF* 33.49 23.48 28.49

PointNet++ NLL 0.005 ‡ 32.21 30.39 31.30

PointNet with negative loss likelihood loss achieve the lowest mean Chamfer
distance and ultimately outperform the best performing configurations from the
P2ILF challenge [4]. However, it should be noted that despite the high perfor-
mance on the combined dataset, these configurations generalise poorly to the
P2ILF dataset, which can be observed in Table 1. For instance, the PointNet++
configuration using weighted cross-entropy loss records a mean Chamfer distance
of 12.71mm on the combined dataset but deteriorates sharply to 41.99mm when
generalising to the P2ILF dataset. Similarly, the PointNet model with NLL loss
(LR = 0.00075) achieves a competitive 12.27mm on the combined dataset, yet
it fails to generalise, reaching 199.94mm on the P2ILF dataset.
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Furthermore, Table 1 highlights that PointNet++ with combined midline
and weighted cross-entropy loss functions along with a learning rate of 0.01,
when trained on the combined dataset and tested on the P2ILF dataset, out-
performs all teams from the P2ILF challenge and achieves the best results out
of all our models tested on the P2ILF data. Although the Chamfer distances re-
ported by this model are lower than those presented in Table 2, they nonetheless
demonstrate that our proposed method generalises effectively to unseen data, as
evidenced by its performance on the hold-out set. For example, this method,
using the midline loss at LR = 0.01, reduces the mean Chamfer distance to
16.58mm – a reduction exceeding 36% compared to the UCL team’s method.

4.3 Qualitative Results

Figure 2 provides a comparative visual analysis of segmentation outputs from
models trained on the combined dataset for four patients. Two from the P2ILF
test set (patient 4 and patient 11) [4] and two from the combined dataset (LiTS-
65 and Amos-119) [27]. Figure 3 is also included as a comparison between the
top performing teams in the P2ILF challenge and our best model.

The results indicate that the segmentation produced with the midline loss is
more closely bound to the ground truth. Notably, for both patient 4 and patient
11 in Figure 2, the ridge structure is more accurately delineated as the predicted
midline closely curves around the ridge, which contrasts the broader, region-like
segmentations observed with the weighted cross-entropy model. Although the
overall segmentation size remains relatively large for the ligament, the localisa-
tion is notably improved with the midline loss, showing a more generalised and
anatomically consistent alignment.

These improved results are also evident in the comparisons made in Figure 3.
Segmentations produced by our model demonstrate improvements over the two
highest scoring P2ILF teams. In particular, the predicted ridge and ligament
regions are more accurately aligned with the ground truth in contrast to the
top two P2ILF team’s predictions, which are erratic and have incorrectly placed
some points behind the liver.

By incorporating a geometric aspect, the midline loss improves localisation
by effectively carving the ridge around the liver while ensuring thin segmenta-
tion. Similar improvements in localisation and accuracy are also observed on
the combined dataset patients (LiTS-65 and Amos-119), particularly for ridge
segmentations.

5 Discussion

Our experimental results provide compelling quantitative evidence for the effi-
cacy of our proposed method in 3D liver landmark segmentation. By leveraging
a significantly larger combined dataset of 300 unique 3D liver models [27] and
incorporating our geometry-constrained midline loss, our PointNet++ model
achieves mean Chamfer distances of 16.60mm on the combined dataset and
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Fig. 2. Qualitative comparison of segmentation results between our proposed method
on baselines from P2ILF [4] (patients 4 and 11) and the combined dataset [27] (LiTS-65
[5] and Amos-119 [8]). Ligament points are coloured blue; Ridge points are coloured
red.

16.58mm on the P2ILF dataset. These outcomes contrast markedly with pre-
viously seen approaches, underscoring the limitations faced by earlier methods,
particularly those from the P2ILF challenge teams which were constrained by
limited training data and consequently struggled to generalise. In contrast, our
approach benefits from both a larger, more diverse dataset and a novel loss
function that explicitly enforces geometric consistency by penalising deviations
from a computed central anatomical midline. This strategy promotes thin and
greater-aligned segmentations that more accurately reflect true anatomical struc-
tures. Moreover, the enhanced performance is attributed to the incorporation of
geometric constraints, which provides stronger regularisation and enables the
model to capture complex anatomical variations more robustly. The best re-
sults observed on the combined dataset [27], even when using a P2ILF-trained
model, highlight the substantial improvements in generalisation achieved by our
approach. In particular, the incorporation of the midline loss has proven critical
for enabling robust predictions across diverse liver datasets. As shown in Table
2, even when the PointNet++ model with midline and weighted cross-entropy
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Fig. 3. Qualitative comparison of segmentation results between the two best teams
from the P2ILF challenge [4] and our best model. Test patients 4 and 11 are used.
Ligament points are coloured blue; Ridge points are coloured red. Points on the backside
of the liver are displayed with a lower alpha value.

loss was trained solely on the smaller P2ILF dataset (with a learning rate of
0.00075), it still performed relatively well on the combined dataset, achieving a
mean Chamfer distance of 21.35mm compared to 16.60mm for the model trained
on the larger combined dataset (with a learning rate of 0.01).

Furthermore, visual comparisons reveal that the segmentation outputs using
the midline loss exhibit a distinct, precise curvature of the ridge that is more
tightly bound to the ground truth. In contrast, predictions from models using
solely wCE tend to be broader and less defined, resembling a region-like segmen-
tation. The improved localisation achieved by effectively demarcating the ridge
around the liver not only confirms the enhanced geometric fidelity of our method
but also demonstrates its ability to generalise well to unseen data from differ-
ent datasets. However, in the particularly challenging LITS 65 case, the ridge
is deformed enough that it differs significantly from its typical anatomy and all
models detect the two segments separately rather than one continuous predic-
tion. These mispredictions underscore that even other loss functions struggle
with extreme anatomical outliers, highlighting the need for strategies specifi-
cally designed to handle such extreme cases. Regardless, there is improvement
in cross-dataset performance and this is particularly evident when comparing the
performance on the combined dataset to that of the P2ILF dataset, where our
method substantially reduces mean Chamfer distances and outperforms previous
configurations. Overall, the combination of a robust, extensive training dataset
with a geometry-aware loss function leads to improvements in both quantitative
metrics and qualitative visual assessments, establishing a strong foundation for
future advancements in 3D liver segmentation.

Importantly, the enhanced landmark segmentation accuracy carries direct
benefits for the laparoscopic 3D–2D registration pipeline, especially when con-
sidering typical clinical workflows, whereby preoperative 3D liver models must



12 A. K. Abbas et al.

be aligned with intraoperative laparoscopic images to guide instrument navi-
gation and tumour resection [12,10,6]. More precise 3D landmark localisation
reduces the spatial uncertainty in the initial alignment step, leading to lower
registration error and more stable convergence of feature-based registration al-
gorithms [12,3]. In practice, this can translate to faster registration times and
improved spatial overlay.

Despite these advances, a significant limitation remains in the relatively small
number of annotated ligament landmarks. The lack of ground-truth labels makes
it inherently challenging for the model to learn precise geometry. This scarcity
likely contributes to the broad localisation predictions observed in our quali-
tative results, although the midline loss does mitigate this issue by enforcing
geometric consistency to an extent. In practice, the lack of fine-grained detail
in the training labels limits the model’s ability to capture subtle variations in
ligament morphology, regardless of the loss function used. Addressing this will
require more extensive high-resolution annotations or targeted data augmenta-
tion strategies.

6 Conclusion

In this work, we presented a novel approach for 3D liver segmentation that en-
hances anatomical accuracy by integrating a geometry-aware midline loss func-
tion using a larger, combined dataset. Our method yields notably more precise
and robust segmentations than those produced by traditional loss functions,
effectively addressing common issues such as overly thick or misaligned predic-
tions observed in previous works. By explicitly constraining the segmentation
with geometric information, our approach achieves improved alignment with
true anatomical structures and demonstrates superior generalisation across di-
verse datasets. A major limitation remains in the quality and quantity of existing
data. As such, future research should focus on expanding training datasets to
encompass greater anatomical diversity, integrating a geometrically constrained
loss function that is more tolerant to outliers and the investigation of geometric
recognition features within model architectures.
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