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Abstract. Laparoscopic liver surgery is a popular surgical approach
due to its capabilities of minimising trauma, complications, and recov-
ery times. The use of a laparoscope allows for developments in the
field of machine-assisted surgery due to the availability of intraoper-
ative imagery. Accurate landmark detection of the liver using laparo-
scopic footage is a dependency to many developments, such as 3D-2D
registration. In this paper, we present experimental results measuring
the suitability of popular segmentation models, and their compatibility
with different loss functions when handling intraoperative images; we
also present a pipeline in training models for this segmentation task,
including a novel step of applying post-processing techniques to max-
imise accuracy. Our results are evaluated using precision, Dice similar-
ity coefficient, and a symmetric distance metric. Our results show that
through the use of our proposed pipeline, models retain their ability to
generalise, and can lead to noticeably improved accuracy both quan-
titatively and qualitatively. We demonstrate the feasibility of utilising
post-processing to improve predictions. Finally, possible future direc-
tions in this field following from our results are discussed. The code
from this research has been made available and can be accessed here:
https://github.com/ARMADILLO-VISION /SLiPPA

Keywords: Liver laparoscopy - Image segmentation - Deep learning -
Post-processing

1 Introduction

1.1 Overview

Laparoscopic liver surgery, also known as minimally-invasive liver surgery, has
emerged as a popular approach due to its reduction of patient trauma, recovery
times, and complications compared to other approaches [18]. To enhance surgical
precision in these procedures, machine-assisted approaches have long been an

* Corresponding author


https://orcid.org/0009-0001-6689-6802
https://orcid.org/0009-0008-3383-127X
https://orcid.org/0009-0007-5905-7705
https://orcid.org/0009-0009-8603-2321
https://orcid.org/0009-0006-2240-0592
https://orcid.org/0009-0006-4107-979X
https://orcid.org/0009-0003-8987-6972
https://orcid.org/0000-0003-1313-3542
https://github.com/ARMADILLO-VISION/SLiPPA

2 J. Borgars et al.

area of laparoscopy research. An example of this is 3D-2D registration [10],
where a 3D preoperative liver model is deformed, and key surgical landmarks,
such as tumours and vessels, are projected onto intraoperative footage from a
laparoscope [11]. A key component of the 3D-2D registration pipeline is that of
2D segmentation, where landmarks such as the falciform ligament and ridge [10],
are detected in real-time during the surgery such that the current form of the
liver is recorded. Prior research has demonstrated the efficacy of different model
architectures and approaches to data augmentation with varying levels of success
[2,10], however an approach achieving an acceptable level of accuracy is yet to be
found [2,13]. In this paper we present ablation results into the suitability of five
popular image segmentation models with prior use in surgical research [2,7,9],
and propose a pipeline to train a model for liver segmentation (see Figure 1),
utilising pre-trained weights, training, fine-tuning, followed by a novel mask post-
processing step, thereby facilitating improved model performance.

1.2 Challenges

Obtaining consistently accurate predictions from deep learning models is a non-
trivial task due to a number of reasons. Firstly, the liver is prone to deforming
based on its environment and forces applied upon it [2]. This means that the
liver shape can change drastically not only from patient to patient, but also the
same liver through the duration of the surgical procedure. This issue, combined
with the small amounts of available annotated data and a complex visual envi-
ronments, leads to the necessity of dataset augmentations when training models
[10]. As this task identifies linear landmarks, this leads to heavy class imbalance
(see Table 1), with over 98% being labelled as background within the P2ILF
training set. To counter this imbalance, the choice of loss function and class
weights in this work must be selected appropriately.

Table 1. Occurrences of each class within the P2ILF training set.

Class Count ‘ % (3 s.f.)
Background 244,679,040 98.3
Silhouette 1,872,457 0.752
Ridge 1,765,372 0.709
Ligament 515,071 0.207

2 Related Work

2.1 Medical Image Segmentation

The introduction of UNet by Ronneberger et al. allowed for developments within
the field by proposing the "U-shaped architecture" for Fully Convolutional Net-
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works [17], in which a model has a contracting path with pooling layers and
an expansive path with up-convolutions, with these paths connected by a bot-
tleneck and skip connections. Models building upon the UNet architecture in-
clude UNet++ by Zhou et al. [22], a denser architecture with a greater number
of convolution blocks and dense skip connection pathways, as well as the use
of deep supervision; UNet3+ builds upon the the architecture of UNet++ [7],
with its proposed use being within medical image segmentation. UNet3+ pro-
poses full-scale skip connections where each convolution block in the contracting
path has skip connections to its equivalent and below blocks in the expansive
path; the bottleneck and each block in the expansive path is supervised by the
ground truth, as well as having skip connections to every block further along
the expansive path. The aforementioned models have all been measured against
the LiTS 2017 benchmark [4,7], highlighting the focus on the medical imag-
ing field. ResUNet is a deep residual UNet model which replaces the standard
Convolution-ReLU block with a residual block with batch normalisation [21].
ResUNet++ builds on top of ResUNet, adding squeeze-excitation blocks for dy-
namic weighting of convolutional channels, ASPP to allow for broader context
when classifying a pixel, and attention to enhance feature quality [8]. Tailored for
medical image segmentation, ResUNet+-+ outperforms both UNet and ResUNet
in colonoscopy segmentation benchmarks |8].

2.2 Laparoscopic Segmentation

Anteby et al. discuss the suitability of deep learning, notably Convolutional
Neural Networks (CNNs), in the segmentation of laparoscopic imagery, having
already revolutionised the field of medical imagery [3]. Applications such as
tool detection and anatomy recognition were found to be suitable [3], with use
cases only increasing as developments are made within the field. Koo et al.
successfully demonstrated semantic contour detection of the ridge and silhouette
of the liver through the use of CNNs, using CASENet with a ResNet50 encoder
pre-trained on the ImageNet dataset [10]. Dataset augmentation through scale,
shear, brightness, contrast, rotation, and translation were applied, promoting
generalisation and invariance of the model with a small dataset [10]. As part of
MICCAT 2022, the Preoperative to Intraoperative Laparoscopy Fusion (P2ILF)
challenge was hosted, focusing on solving the end-to-end task of 3D-2D liver
registration without human annotation, including liver landmark segmentation
from laparoscopic images [2]. As opposed to the work presented by Koo et al.,
the P2ILF dataset also contained annotations for the falciform ligament [2,10].
Teams from around the world competed in the P2ILF challenge, covering a range
of different approaches in terms of model, loss function, data augmentation, and
pre-training [2]. Pei et al. introduce D2GPLAND, a depth-aware model which
is guided by unified features from an estimated depth map through the use of
a depth estimation network and a Segment Anything Model (SAM) encoder, as
well as using the ResNet34 encoder on the original image [15], achieving best-
in-class results evaluating against their L3D dataset. Pei et al. publicly released
L3D, which is the collation of laparoscopic images from multiple sources [15].
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Fig. 1. Pipeline of 2D segmentation task. Dashes represent an optional process.

3 Methodology

3.1 Proposed Method

Firstly, all models selected for the ablation study — UNet, UNet-++, UNet3-+,
DeepLabV3+, and ResUNet++ — are all equipped with ResNet34 encoders that
have been pre-trained on the ImageNet dataset prior to training. The ResNet
family of encoders have achieved state-of-the-art Dice scores on endoscopic seg-
mentation [6], demonstrating its suitability. ResNet34 was chosen due to its
balance of accuracy when compared to larger ResNet models [14], with less com-
putational cost. Parameters ablated over include learning rate, batch size, and
loss function. The model is trained on the L3D dataset, which has been aug-
mented with flip transformations on both axes. The AdamW optimiser is used
for training, and the loss functions ablated consist of different weightings of cross-
entropy loss, Dice loss, Huber loss, and Focal-Tversky loss (see Equation 2). For
cross-entropy loss, the following novel modified logarithmic class weights func-
tion was used, where M is the set of all training mask pixels, and M; C M is
the set of all training mask pixels of class i:

5= 0,100 L1 8

Once training has been completed, models were evaluated using two vali-
dation patients chosen from the P2ILF training set, using precision and Dice
similarity coefficient (DSC) metrics. Candidate models are then selected to be
fine-tuned on the P2ILF dataset from this evaluation.
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Finally, predicted masks from the fine-tuned model are post-processed. This
involved culling known false positive pixels (i.e. pixels out of camera, ligament
predictions above/below both the ridge and silhouette), applying the Ramer-
Douglas-Peucker algorithm [16] for smoothing landmark contours, and applying
the Zhang-Suen algorithm for skeletonisation of contours [20]. This centre line
can then be dilated for evaluation, or sampled into a set of points. The Ramer-
Douglas-Peucker algorithm is as follows:

1. The first and last points of the curve are connected with a straight line.

2. Every other point in the curve has its perpendicular distance to this straight
line calculated.

3. If the furthest distance recorded is greater than some value ¢, then the point
this was found at is preserved, and two sub-curves are defined either side of
this point.

4. The algorithm is recursively called for the two sub-curves that were previ-
ously defined.

3.2 Loss Function

Our proposed composite loss function using weighted cross-entropy (LwcEg), Dice
loss (Lp), Huber loss (Ly), and Focal-Tversky loss (Lprr,) can be represented
as:

L=a Lyce+B -Lp+7v L+ LrTL (2)

Here, «, B, 7, § are the weights (i.e. hyperparameters) which we intend to
ablate to find the optimal loss function.

4 Results

4.1 Dataset

Two datasets were used for model training: the L3D dataset was used to initially
train the model [15], and the P2ILF dataset was used for further fine-tuning [2].
Three landmarks are present within the segmentation masks of both datasets:
the silhouette, the ridge, and the falciform ligament.

The L3D dataset contains 1,152 image frames from 39 patients (122 frames
are in the validation set, and a further 109 images are within the test set). The
P2ILF dataset has 197 frames from 11 patients (47 images from two patients
make up a validation set, and 30 images consisting of two patients make up a
holdout set).
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4.2 Evaluation Metrics

To evaluate model performance, the metrics used in the P2ILF challenge 2D
segmentation task [2] were also used for our evaluation, these metrics being:

— Precision (P): this metric focuses on penalising false positives within the
dataset to ensure that correct predictions are made.

— Dice similarity coefficient (D): this metric is used to focus on the similarity
between the predicted segmentation mask (Ypreqa) and the ground truth seg-
mentation mask (Yipuen). It is the number of true positive predicted pixels
multiplied by two and divided by the sum of predicted positive pixels and
actual positive pixels.

o 2- |Ypred N thruth|

|Ypred| + thruth‘

D (3)

— Symmetric distance (G): Ali et al. [2] use the symmetric distance proposed
by Francois et al. [5]. dmax is & threshold value for whether a predicted
landmark is spurious, By is the set of predicted image landmarks, whilst C;
is the set of ground truth image landmarks. @ is the tolerance region around
the ground truth landmarks (defined by the threshold di,.x), and dg is a
function that calculates symmetric distance.

1

G=——
2'|CI|'dmax

> ds(br,C/\FN)+ >~ ds(cr, BinQ) | (4)
br € BrnQ c; € C/\FN

|FP| |FN]|
|I|72'|CI"dmax ‘CI|

+

4.3 Experimental Setup

In training, the L3D dataset was augmented with mirror augmentations across
both the x— and y— axes, followed by resizing to 416 x 320 pixels. The AdamW
optimiser was used with a learning rate plateau scheduler, which multiplied
learning rate by 0.2 after three epochs of stagnation. Training was performed
on an NVIDIA RTX 4070, except for UNet3+, where an NVIDIA 1L40S was
used due to extra VRAM being required. For the ablation study, learning rates
of {0.1,0.05,0.01,0.005,0.001,0.0005,0.0001} were tested, and batch sizes of
{2,4,8,16,32} were used (UNet3+ was only ablated up to batch size 8 due
to VRAM constraints). A patience of 7 was used throughout.

For loss function experimentation, 35 ablations were conducted per model on
the composite loss function in Equation 2. The loss function hyperparameters
(o, B, 7, and ) shown in Table 3 (see 5th column) are the best performing
configurations from the ablation after other parameters were ablated over. Per-
formance was evaluated using patients 1 and 2 from the training set of P2ILF
as an evaluation set, providing us with candidate models for fine-tuning (see
Table 3).
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Table 2. P2ILF 2D segmentation challenge results [2] evaluated using our implemen-
tations of precision, Dice similarity coefficient, and the symmetric distance metric.
Results are in the order of ridge, falciform ligament, and silhouette. P, D, G are the
metric mean across all three landmarks. The best mean results are highlighted in bold.

Team | Pt | Pt | D1t | b1 | Gl K
BHL | 0.24/0.41/0.46 | 0.37 | 0.22/0.43/0.50 | 0.38 | 0.70/0.43/0.40 | 0.51
NCT | 0.20/0.31/0.41 | 0.31 | 0.24/0.32/0.52 | 0.36 | 0.52/0.51/0.32 | 0.45
UCL | 0.11/0.43/0.38 | 0.31 | 0.13/0.48/0.40 | 0.34 | 0.73/0.63/0.42 | 0.59
VIP | 0.11/0.23/0.19 | 0.18 | 0.16/0.33/0.29 | 0.26 | 0.71/0.44/0.62 | 0.59
VOR | 0.10/0.15/0.16 | 0.13 | 0.15/0.24/0.25 | 0.21 | 0.70/0.65/0.66 | 0.67

Models were fine-tuned using the P2ILF training set (patients 1 and 2 were
used as a validation set) with a learning rate of 0.0001, a batch size of 8, and a
patience of 7. Two rounds of fine-tuning was performed: once with solely cross-
entropy loss and another with a loss function consisted of weighted cross-entropy
loss (Lwcg) and Focal-Tversky loss (Lprr,) with o = 0.75 and § = 0.25 (see
Equation 2) A Focal-Tversky component was added to the fine-tuning loss func-
tion due to low recall of models after fine-tuning with solely cross-entropy loss
(shown in Figure 2). The Tversky index represents a generalisation of Dice loss,
with the focal component promoting predictions of more difficult classes (i.e.
landmarks) [1]. Lahlouh et al. achieve their best results using a combination
of cross-entropy loss and Focal-Tversky loss when performing segmentation on
cerebral angiography imagery [12], highlighting its medical suitability.

Table 3. Candidate models selected from the L3D training ablation study. Here, «, (3,
v, and ¢ are the coefficients used in the loss function £ in Equation 2.

No. | Architecture | Learning Rate | Batch Size ‘ a/B/v/é

1 UNet 0.0001 32 1.00/0.00/0.00,/0.00
2 UNet 0.0001 8 1.00/0.00,/0.00,/0.00
3 UNet+-+ 0.001 32 0.25/0.25/0.00/0.50
4 UNet++ 0.0005 16 0.50/0.00/0.50/0.00
5 UNet+-+ 0.0005 16 0.75/0.25/0.00/0.00
6 UNet3+ 0.001 8 0.50/0.00/0.00/0.50
7 UNet3+ 0.001 8 0.50/0.25/0.00/0.25
8 DeepLabV3+ 0.0001 64 0.25/0.00/0.25/0.50
9 ResUNet++ 0.0005 16 0.50/0.00/0.00/0.50
10 ResUNet++ 0.0005 8 0.75/0.00/0.00/0.25
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4.4 Quantitative Results

Firstly, testing of the cross-entropy weighting function was performed, the same
model with the same parameters was trained with three different class weight-
ings for cross-entropy loss: proportional, logarithmic weighting, and our cus-
tom weighting (see Equation 1), fine-tuning of models and post-processing was
not performed on any evaluations. As shown in Table 4, standard proportional
weighting simply fails at the segmentation task, logarithmic weights provide a
significant improvement, but by using our novel class weighting function, pre-
cision is doubled compared to logarithmic weights, and best performance in all
three evaluation metrics.

Table 4. Evaluation of different cross-entropy class weightings on the P2ILF test set.
Best results are shown in bold.

Weighting Pt D+ G|
Proportional 0.05 0.00 1.00
Logarithmic 0.19 0.22 0.76

Ours 0.41 0.29 0.54

Table 3 shows the configurations of the ten best candidate models from the
ablation study. For this, at least one model from each architecture was selected
based on highest combined mean precision and DSC from the P2ILF evalua-
tion set. Table 2 illustrates the P2ILF challenge results using our evaluation
implementation for comparison.

Table 5 shows the performance of candidate models after initial training,
fine-tuning, and post-processing, evaluating against the P2ILF test set. Fine-
tuning was done with solely weighted cross-entropy loss (Lycg). 50% of mod-
els outperformed P2ILF in mean precision prior to any fine-tuning (i.e. solely
trained on ImageNet followed by L3D, never having seen the P2ILF dataset),
with this proportion increasing to 80% after fine-tuning. However, no model at
any points outperforms the P2ILF teams in mean DSC or symmetric distance.
Post-processing sees to have minimal effect on evaluation in Table 5, with slight
increases in mean DSC and precision on average, but with worse performance in
symmetric distance.

Table 6 shows the evaluation after the Focal-Tversky component was added
to the loss function for fine-tuning. It was noted that this resulted in better
performance compared to Table 5 with regards to the DSC and symmetric dis-
tance metrics after fine-tuning, but did not consistently outperform P2ILF in
any metric (10% of models in mean precision and symmetric distance, and 40%
of models in mean DSC) prior to post-processing.
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Table 5. Results of candidate model fine-tuning using cross-entropy loss (Lcr). High-
lighted cells represent a result that beats all P2ILF teams in that metric, the best
results are highlighted in bold.

Candidate | Initia_l ’I‘raini_ng _ Fin(i-Tunin_g _ Post-lfrocess_ing
Pinse 1| Dinss 1] Ginse || Poane 1 [ Deuno 1] Gruno 1| Pose 1 Dpost 1 Gpose |
1 0.39 | 0.22 | 0.69 | 0.45 | 0.23 | 0.67 | 0.44 | 0.26 | 0.67
2 0.41 0.29 0.54 0.44 0.33 0.52 0.45 0.35 0.53
3 035 | 0.28 | 0.59 | 038 | 0.30 | 0.56 | 0.43 | 0.32 | 0.57
4 042 | 0.25 | 0.64 | 0.43 | 0.30 | 0.55 | 0.45 | 0.32 | 0.57
5 0.39 | 028 | 0.61 | 0.38 | 0.31 | 0.56 | 0.39 | 0.32 | 0.57
6 0.36 | 024 | 060 | 051 | 0.31 | 0.51 | 0.52 | 0.33 | 0.54
7 032 | 031 | 056 | 042 | 0.25 | 0.62 | 0.44 | 0.28 | 0.63
8 034 | 023 | 065 | 036 | 0.21 | 0.69 | 0.36 | 0.22 | 0.72
9 0.38 | 0.27 | 0.63 | 0.30 | 0.15 | 0.80 | 0.30 | 0.15 | 0.79
10 0.32 | 0.17 | 0.70 | 043 | 0.17 | 0.70 | 045 | 0.21 | 0.72

Table 6. Results of candidate model fine-tuning using a combined loss function of
cross-entropy loss (Lcg) and Focal-Tversky loss (Lprw). Highlighted cells represent a
result that beats all P2ILF teams in that metric, the best results are highlighted in

bold.
Candidate — Initia} ﬁaining _ Fin(i-’I‘unin? _ Post-f’rocess}ng
Pinse 1| Dinse 1| Ginse 1] Peuno 1| Done 1] Gruno 1| Poost 1 [ Dypost 1| Gross |

1 0.39 | 022 | 069 | 035 | 0.37 | 047 | 045 | 0.37 | 0.44
2 0.41 0.29 | 054 | 0.38 | 0.40 | 0.40 | 0.48 | 0.43 | 0.39
3 0.35 0.28 | 059 | 035 | 0.37 | 0.47 | 047 | 0.39 | 0.45
4 0.42 | 0.25 | 0.64 | 0.31 0.36 | 0.53 | 040 | 0.37 | 0.48
5 0.39 | 0.28 | 0.61 0.36 | 0.39 | 046 | 0.44 | 0.39 | 0.45
6 0.36 | 0.24 | 0.60 | 0.33 | 0.41 0.47 | 044 | 042 | 0.40
7 0.32 0.31 0.56 | 033 | 040 | 0.54 | 045 | 042 | 0.43
8 0.34 | 0.23 | 0.65 | 0.31 0.29 | 0.60 | 040 | 0.30 | 0.56
9 0.38 | 0.27 | 0.63 | 0.31 0.29 | 0.66 | 0.35 | 0.28 | 0.56
10 0.32 0.17 | 0.70 | 0.32 | 0.34 | 0.51 0.39 | 0.34 | 0.50
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It is evident that post-processing led to noticeable improvements for this
model. Mean precision increased on average over 9%, from 33.5% to 42.7%,
making 90% of candidate models outperform all P2ILF teams in this metric.
Improvements were also seen across DSC and symmetric distance. From this
evaluation, there are five candidate models that match or beat all teams from
the P2ILF 2D segmentation task in all metrics, with three models outperforming
in every metric outright (see Table 2 and Table 6).

Candidate 2 performed best: the model provided an 11% increase in mean
precision (30% relative increase), a 5% increase in mean Dice score (over 13%
relative increase), and 6% decrease in symmetric distance (over 13% relative
improvement) compared to the best result in each metric in the P2ILF 2D seg-
mentation task (see Table 2 and Table 6).

Regarding execution performance, the time taken for inference and post-
processing was recorded. Inference ranged from 9-15 milliseconds, whilst post-
processing added a 9-12 millisecond penalty. This results in a production fre-
quency range of 37-56Hz, acceptable for real-time operation.

4.5 Qualitative Results

Figure 2 shows six example images from the P2ILF test set, three from each test
patient (patients 4 and 11). Results are shown from the two best performing
teams reported in the P2ILF challenge 2D segmentation task (BHL and NCT -
see Table 2) together with our best performing model - candidate 2. Resulting
inferences from initial training of the model (see TRAIN in Figure 2), P2ILF fine-
tuned models without post-processing (see CE_FT and FTL_FT), and finally with
post-processing (see CE_PP and FTL_PP) are shown. Results that have the CE_
prefix is where candidate 2 was fine-tuned solely with cross-entropy loss; results
that have the FTL_ prefix is where candidate 2 was fine-tuned with both a cross-
entropy loss component and a Focal-Tversky loss component, as described in
4.3.

Our qualitative results demonstrate that the approaches employed by BHL
and NCT can result in broken contours, particularly noticeable on images from
patient 11. Sub-figure TRAIN shows that the model under-predicts landmarks, al-
beit with high precision when it does predict (i.e. a low false positive rate). CE_LFT
and PP_FT still exhibit this behaviour, but this does not seem to be present in
FTL_FT. This increase does lead to thicker contours however, with some contours
being disconnected or broken. Once FTL_FT has been post-processed, shown in
FTL_PP, contours are now connected and consistent in thickness, cleaning up the
output of the model significantly.

Figure 3 shows two failure cases for the model, it is evident that the model
has difficulty predicting in cases where there is a low level of lighting, and where
the liver is being manipulated such that the anterior view is not fully facing
the camera. The precision in these images are still of good quality, reinforcing
the idea that the model is able to generalise well, but cannot predict the full
contours in extreme cases, although maintaining a low false positive rate from a
qualitative perspective.
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Patient 4 Patient 11

_ TRAIN NCT BHL GT

CE_FT

CE_PP

FTL_FT

FTL_PP

Fig. 2. Qualitative results on the P2ILF test set. GT shows ground truth annotations.
BHL and NCT are the predictions made by the BHL and NCT teams from the P2ILF chal-
lenge respectively [2]. TRAIN is the predictions made by candidate 2 after initial train-
ing. CE_FT represents candidate model 2 being fine-tuned solely with cross-entropy loss
(without post-processing). CE_PP is the same model as CE_FT but with post-processing
applied. FTL_FT represents candidate model 2 being fine-tuned with both cross-entropy
loss and Focal-Tversky loss (without post-processsing). FTL_PP is the same model as
FTL_CE but with post-processing applied.
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Ground Truth Prediction

Fig. 3. Examples of failure cases of candidate 2, compared with ground truth masks.

5 Discussion & Conclusion

5.1 Discussion

Table 5 and CE_FT in Figure 2 show that the model is precise when making
a prediction, however it is visible that the recall is low. Due to this under-
prediction, the advantages of post-processing is minimised (see CE_PP) due to
thin and sparse predictions meaning there is little to process, the difference
between FTL_FT and FTL_PP is visibly greater. The lacklustre post-processing
performance in CE_PP is also seen quantitatively, with tune and post values
being noticeably similar in Table 5, when compared to differences shown in
Table 6.

Table 6 and sub-figure FTL_FT in Figure 2 show a model that is less prone to
under-prediction when compared to CE_FT, correctly predicting a greater propor-
tion of landmarks, albeit with thicker contours. FTL_PP visualises the improve-
ment in metrics shown in Table 6 after post-processing, with thinner contours,
connection of nearby contours, whilst also leading to a more accurately predicted
contour as shown by the improved DSC and symmetric distance scores.

Adding a Focal-Tversky loss component to the loss function promotes predic-
tion of landmarks within a mask due to the focal exponent adding emphasis to
landmark predictions that are of low certainty (i.e. difficult predictions). Post-
processing improves evaluation metrics when there is over-prediction present by
thinning contours such that they are more precise, with smoothing simplifying
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the contour such that the jaggedness of a contour is removed, due to it not reflect-
ing the form shown by the landmarks of the liver that the model is attempting
to predict.

The approach taken by Pei et al. in the estimation of depth masks attempts
to provide more context to the model for predictions [15], an approach that we
believe can be studied further. Labrunie et al. utilise distance maps as opposed
to binary masks when training their 3D-2D registration model [11], allowing
models to learn data that does not have harsh binary boundaries around the thin
contours, and is highly transferable to the task of intraoperative segmentation of
the liver through these landmarks. The mask post-processing presented in this
paper lays out the fundamentals of this approach, with in-depth ablation studies,
and ideas such as mask correction through deep learning yet to be explored.

There is a question concerning the appropriateness of DSC as an evaluation
metric, due to the task predicting contours, rather than segments of an image;
alternatives such as centre line Dice (clDice) [19] should have their suitability
investigated in this field.

5.2 Conclusion

In this work, we proposed a systematic approach in training segmentation mod-
els in the context of liver laparoscopy. The methodology involves utilising pre-
trained models on a large generic dataset, such as ImageNet, followed by further
training on a large dataset of laparoscopic images, which can be obtained from
multiple sources as demonstrated by the L3D dataset. Fine-tuning can then be
performed on a high quality dataset from a single source. Furthermore, we in-
troduce a novel post-processing pipeline that incorporates colour segmentation,
skeletonisation, and contour smoothing to minimise errors from false positive pre-
dictions. We present results that outperform in all metrics used for the P2ILF
challenge 2D segmentation task, on the same dataset. Research areas such as
synthetic data generation and depth estimation hold promise for development in
this field. The research presented in this work forms part of a 3D-2D registration
pipeline, where no human annotation is required.
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