
Achieving Arbitrary Code Execution on the
Nintendo DS using Buffer Overflow

Vulnerabilities

James Borgars

June 8, 2021

1 Introduction to the Nintendo DS

The Nintendo DS is a video game console created by Japanese company
Nintendo which was released in 2005 in Europe. It was hugely popular,
having sold over 150 million units worldwide.1

Due to the age of original Nintendo DS model (which will also be referred to as
the NDS), the security is not seen as very effective by today’s standards. To
run homebrew (software made by an independent developer that was not au-
thorised or published by the console manufacturer), a ”passthrough” method
was required. These can range from hardware devices such as adapters or
by sending a payload from a computer wirelessly to the NDS using a feature
known as DS Download Play. A list of discovered passthrough methods
with explanations as to their attack vectors and workings was posted by
Damian Yerrick.2

Firmware was updated several times by Nintendo when they manufactured
later units of the NDS, which can be identified through making the device
freeze in a certain way, as explained in the following forum post3 :

Insert an authentic Nintendo DS Game Card into SLOT-1, or
a Game Boy Advance cart into SLOT-2, of your Nintendo DS.
Turn on DS (hold Select+Start if you have autostart enabled
in the settings).
Enter Pictochat.
Enter any chat room.
Eject the Game Card or GBA Cart from the DS.

v1: Pictochat hangs

v2: two grayish blue screens

v3: two dark green screens

v4: two golden yellow screens

v5: two magenta screens (DS lite units have this)

v6: two dark blue screens (un-confirmed new DSes have this)

iQue: two dark green screens

From the DSi model onwards, Nintendo was able to release firmware up-
dates to console owners who connected their console to WiFi. This allowed
Nintendo to patch firmware bugs that could be exploited to load arbitrary
code. We are going to be exploiting the original Nintendo DS model for the
purposes of this project.

2

2 Preparation

This project is inspired from the paper titled Exploiting DS games through
stack smash vulnerabilities in save files by CTurt.4 These type of vulnerabil-
ities do indeed allow for arbitrary code execution but are limited by the SD
Card or NAND access,5 meaning that any exploit that is found is limited to
the payload stored in the save. These exploits would not be able to execute
a sizeable amount of code (due to the maximum file size of a save file) as well
as being difficult to modify the payload for an average user, rendering these
exploits useless in a lot of scenarios.

The tools used for this project will be similar to that used by CTurt, however
a much larger selection of tools will be used for this project.

The development team devkitPro maintains an ARM compiler (The pay-
load will run on the DS’ ARM9 processor) that also comes with the library
nds.h, which makes it possible to convert some C/C++ code into ARM
assembly.

In terms of emulation, I going to be using two different programs: DeS-
muME Dev Build and No$GBA Debugger, I felt two emulators neces-
sary due to discovering the following when testing them ahead of this project:
DeSmuME had much more accurate emulation and had some good debug-
ging features, however register values and memory offsets were incorrect.
No$GBA had apparent bugs during emulation and lacked features such as
searching for ASCII strings in memory, but provided accurate memory ad-
dresses and register values during testing.

Python 3 will be used to create scripts in aiding the patching of savefiles, as
almost every game has checksums stored within its savedata in order to detect
tampering and corruption, however we will be attempting to figure out what
checksum is used in order to avoid these forms of tamper detection.

Hex Editors are also vital in editing savedata, as I will be moving back and
forth betweeen a Linux distribution and a Windows partition, I will be using
wxHexEditor for Linux and HxD for Windows. Finally, the last necessary
thing to mention is the game that is going to be the target for this project:
WordJong DS, specifically the 2007 USA release, as the save data is not
cross-compatible with later releases of the game. The reasons why WordJong
DS was chosen are the following:

3

1. The game has functionality to store a name - meaning it has to store
user input.

2. This name was stored in plaintext ASCII within the save and was null
terminated.

3. Large savedata size - the raw save file comes in at exactly 8 KiB, this
allows for a relatively large payload for the type of exploit.

4. It seems like there is only one checksum for the entire savedata.

3 Reversing the Checksum

By creating multiple saves for the game, it was evident that if you changed
the name of your profile (and nothing else), two areas of the save would
change:

1. The plaintext ASCII string of the name

2. The first four bytes of the save - this is a very strong indicator of being
the checksum

Having tested checksum reversal of another game, Driving Theory Train-
ing, before starting this project, I became familiar with a group of check-
sum generators known as Cyclic Redundancy Checks (or CRCs), this
was present in a custom 16-bit implementation (known as a CRC-16) for
Driving Theory Training. Unfortunately, Driving Theory Training was not
exploitable even after reversing the checksum, due to checking the values of
certain bytes and a very small save file size.

As the checksum for this save file was four bytes, I strongly suspected it may
be an implementation of CRC-32, which is the most common form of CRC.
When reversing the checksum of Driving Theory Training, I came across
the program RevEng CRC, which became very helpful in finding out the
variables involved in a specific CRC implementation, especially if it is not
part of the group of most popular implementations. I used RevEng CRC
with WordJong save files, having given it four instances of save data as well
as their corresponding checksums. Instantly it returned with one matching
CRC implementation: known as CRC-32/JAMCRC.

4

Figure 1: The output of RevEng CRC when it was given the save files

After knowing this I wrote a Python script using the pwntools and binascii
libraries to calculate read a save file, and calculate the correct checksum for
that file.

4 Exploring Attack Vectors

Now that the checksum has been rendered useless in regards to checking
for valid code, it is now time to explore what is possible with regards to
savefile editing. I was happy to see that after writing a large amount of
0xAA consecutively after the ASCII string of the user’s name, the game
did not detect corruption, meaning that there are a very limited number (or
possibly zero) value/range checks of certain bytes. This led to the corruption
of data used for the Awards section of the game, and I also discovered a crash
within that section, as it tries to load the user’s name on one of the pages,
therefore causing a Buffer Overflow. After, inspecting the buffer overflow,
I could see that the register R3, R4, R5, and most importantly, R15 (the
Program Counter) were overwritten by save data. At this point I knew I had
found a viable entry point for Arbitrary Code Execution.

Using both emulators, I got more familiar with the memory layout that was
present in the game and managed to calculate the correct memory offset of
the bytes that overflow the Program Counter, I could then set those bytes
to a memory location just after its own offset, therefore allowing execution
of code that is located just after the overflow itself.

5 Payload Creation

With this exploit, a payload would have to be stored in binary within the
save file. Using the some tools from the devkitPro Compiler, it is possible
to convert C code down into ARM9 assembly and then into the binary rep-
resentation of the same assembly instructions. However, the premise of this

5

paper is to show how to achieve Arbitrary Code Execution in the first place
and less about what the code actually does. This factor combined with the
difficulty of learning ARM assembly and the time necessary with both the
assembly language and the required programs, meant developing a complex
payload was simply not worth it. Luckily, in CTurt’s report,4 he posts a small
piece of ARM assembly code that makes the DS screen change colour. This
is enough to show a Proof of Concept of Arbitrary Code Execution.

Using a Makefile, we can convert the ARM9 assembly down into binary, this
can then be appended after the string which overflows its buffer, followed by
running the new save file through the Python Script to patch the CRC. We
can now trigger the added code by going to Page 2 of the Awards Section of
the game.

Figure 2: A screenshot of an emulator running the payload.

6

6 Conclusion

In summary, I pursued this project in order to delve into areas of computing
that I am not familiar with, and can finish this project by saying that I feel
accomplished having done this, and have learned how to adapt to very new
and complex situations in regards to programming and understanding code.
It would be nice to further this project by executing more complex code from
the exploit in the future, however I need to refine my skills in other areas
before attempting to pursue programming in ARM32 assembly.

I will upload some of my code, including the Proof of Concept save file,
a ’stub’ save file (has the exploit but no payload), as well as the patching
Python script, to my GitHub (https://github.com/Borgars), if anyone
wishes to look further, and develop their own code/exploits with my findings
as a template.

Overall, this project left me with not only a sense of accomplishment, but
also some tangible fruits for my labour in the form of a functioning exploit,
as well as a sense of surprise that ”smashing the stack” was/is still a viable
exploitation technique in the 21st Century.

References
1 Nintendo. Consolidated sales. https://www.nintendo.co.jp/ir/

library/historical_data/pdf/consolidated_sales_e1603.pdf, 2016.
Accessed: 2021-06-04.

2 Damian Yerrick. Nintendo DS passthrough methods. https://pineight.

com/ds/pass/, 2005. Accessed: 2021-06-04.

3 seikene. Find your DS firmware. https://acidmods.com/forum/index.

php?topic=15112.0, 2008. Accessed: 2021-06-04.

4 CTurt. Exploiting DS games through stack smash vulnerabilities in save
files. https://cturt.github.io/DS-exploit-finding.html, 2015. Ac-
cessed: 2021-06-05.

5 DSiBrew. DSi exploits. https://dsibrew.org/w/index.php?title=DSi_
exploits, 2020. Accessed: 2021-06-05.

7

